

HPC Teaching Kit By EuroCC Belgium

What is HPC?

- Aggregation of computer power (in the form of supercomputer or clusters) to deliver high computational performances, in order to solve large problems.
- Clusters are linked computers (= nodes) that works together, so that, for many aspects, they look like one single computer (*more on that latter*).
- The work is distributed across workers (*more on that latter*).

Exemples of HPC uses Have a look at www.enccb.be/stories

Examples: fluid dynamics

https://www.enccb.be/usvortexunit

Aircraft design

https://prace-ri.eu/automating-aircraft-design-and-optimisation/

Predicting the climate

https://www.enccb.be/usxavierfettweis

Examples: materials

Predicting the structure of gold cluster that chops carbon dioxide

https://prace-ri.eu/computer-simulations-gold-cluster/

Tailoring the properties of 2D materials

https://prace-ri.eu/simulations-help-to-tailor-the-properties-of-2d-materials/

Examples: biology

Unraveling the behavior of the hIDO1 protein

https://www.enccb.be/usmanonmirgaux

Understanding how radio waves propagate in the head with Shamo

https://www.enccb.be/usshamo

Improving chocolate with supercomputing

https://www.enccb.be/uschocolate

Examples: physics, mathematics, engineering,...

Simulating Galaxies

https://www.enccb.be/usuniverse

Outsmarting NP-hardness

https://www.enccb.be/uslogisticsnphardness

Optimizing particle processes through simulation with MPacts

https://www.enccb.be/usmpacts

But also:

•

- Artificial intelligence
- Machine learning

Examples

Data analysis

What is EuroCC?

- EuroHPC Join Undertaking is a joint initiative between the EU (European countries) and private partners to develop a world class supercomputing system in Europe.
- EuroCC is a project of EuroHPC-JU, which tasks each participating countries to create a national competence center (NCC) in the area of HPC. They coordinate activities in the HPC/HPDA/AI fields and serve as contact point.
 - \rightarrow More information on <u>https://www.enccb.be/</u>.
- Different missions, including contact with industry, raising awareness and organizing trainings.

Outline of this presentation

EURO²

- Current status of the supercomputing infrastructures
 - Performance and the TOP500 list
 - Supercomputers in Europe
 - Supercomputers in Belgium
- Understand how a supercomputer works:
 - Architecture
 - Components
 - Interactions
- Understand how program can use such large resources, and what are the issues that needs to be overcome:
 - Parallelism
 - Parallelisation issues

Where are we today?

Which supercomputers for Belgium

Performances

EURO²

- One of the measurement is FLOPS = floating point operations per second (\simeq speed)
- Note that it depends on single (SP, 32 bits) or double (DP, 64 bits) precision!

The TOP500 is a list of the fastest supercomputer in the world

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.66Hz, NVIDIA A100 SXM4 64 6B, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438

The TOP500

Supercomputers in Europe

Capability (~FLOPS)

Number of systems

European infrastructure

TIER-2 in Belgium (academic level)

Flanders: the VSC (<u>https://www.vscentrum.be/</u>)

Accessible for every researchers of the corresponding universities. **Trainings** are also provided

TIER-1 in Belgium

Provides access (through calls) and support.

TIER-0 (LUMI)

- First european preexascale supercomputer
- 100% hydropowered energy
- Regular training in Belgium

What are supercomputers?

How they work

Anatomy of a cluster

User computer

Icons from the Noun project (https://thenounproject.com/)

Components

Components: GPU / Accelerators

- Instead of a few powerful cores, many less powerful cores
- Consumer grade GPU: provide good FLOPS for single precision operation, not for double precision
- Dedicated class of cluster grade GPU (e.g., NVIDIA Ampere or AMD Instinct)
- Future of HPC?

AMD Instinct (amd.com)

Ampere (nvidia.com)

Interaction with the supercomputer

- Generally, through command line
- Users submit jobs on the cluster, and wait for the results
- For each "job", the scheduler (e.g., SLURM) requires to know time/memory/number of processor and node and tries to fit the job when a slot is available.
- Different clusters have different purposes, e.g.,
 - High-memory application,
 - Small and fast jobs,
 - Nodes with accelerators, ...

How to use such large resources efficiently?

Solutions... and challenges

Particularities of supercomputing

- Advantage of supercomputing
 - Larger size: some problem requires large amount of memory
 - More speed: some problem requires long time to be solved
- Solution ... And issues:
 - More memory (but storage hierarchy)
 - Parallelism (... has inherent difficulties)

Tackle speed: parallel computing

- To achieve such performances, the main idea is to rely on parallel computing : executing many operations in a single instance of time.
- But the program needs to be adapted for such purpose!

Serial world: 1 worker (person) to build

Images from LEGO (lego.com)

Parallel world: 2 workers to build \rightarrow about 2 times faster

Speedup is never what you expect...

In most cases, a problem is never fully parallelizable (i.e., **embarrassingly** parallel)

 \rightarrow No matter how fast the parallel portion, we will always be limited by the serial part.

Amdahl's Law:

$$S = \frac{1}{s + \frac{P}{N}}$$

S: actual speedup

- s: serial portion of the code (in %)
- P: parallel portion (in %)
- N: number of processors

Image from Wikipedia (wikipedia.org)

This address the question "how much processors can I use for a given problem?"

On the bright side: weak scaling

If we increase the size of the problem when more processors are added,

S = N - s (N - 1)

S: actual speedupN: number of processorsS: serial fraction (in %)

Image from Wikipedia (wikipedia.org)

This address the question "how much can I increase the size of my problem such that the execution time is the same as if I ran the problem with only one process?"

Recap of strong vs weak scaling

Strong scaling: size of the problem is constant and split across additional processors

Weak scaling: the size of the problem is the same for each processor.

... and there is parallel overhead!

Shared memory model: all workers (or, here, person) are working on the same pool of data (or, here, lego pieces). Small overhead due to **synchronisation** (all person cannot work on the same part of the model at the same time).

Distributed memory model: each worker (or, here, person) is working on its own set of data (or, here, lego pieces). Generally, more efficient (no collaboration during work), but overhead due to **communication** (or, here, distribute pieces in the beginning and assembling the result at the end).

Generally, the two are mixed. It also requires a good **load balancing** (i.e., every person has the same amount of work to do). It is not that easy to achieve.

Also important: storage hierarchy

- The further away from the core, the slowest (but, generally, the more capacity)
- I/O may not be parallel
- Communication is a bottleneck when using multiple nodes
- Efficient movement of data to and from an accelerators

Icons from the Noun project (https://thenounproject.com/)

Tools of the trade

Parallel programming:

- Vectorization (core level)
- Threading / OpenMP (node level)
- CUDA / HIP / OpenCL / OpenACC / OpenMP (accelerator level)
- Socket / MPI / PGAS (cluster level)

Optimized libraries:

- BLAS / LAPACK / MKL (linear algebra)
- FFTW (fast-Fourier transform)
- HDF5 / netCDF (parallel I/O)

To conclude

- HPC is important for actual and future research
- HPC is an active field in Belgium
- There are challenge to overcome, but tools are developed
- This was an introduction, don't be afraid to reach us if you want to know more!
 - \rightarrow More information on <u>https://www.enccb.be/</u>.

Thanks!

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant agreement No 101101903.