
2

Introduction to HPC

By EuroCC Belgium



2Outline of this presentation

PART 1
• Introduction

• Example of uses
• The EuroHPC joint undertaking the EuroCC project

• Current status of the supercomputing infrastructures
• Performance and the TOP500 list
• Supercomputers in Europe and in Belgium

PART 2
• Understand how a supercomputer works:

• Architecture & Components
• Interacting with supercomputers

• Understand how program can use such large resources, and what are the issues that needs 
to be overcome:
• Parallelism
• Parallelization issues



2

PART 2



2

What are supercomputers?
How they work



2Anatomy of a cluster

Icons from the Noun project (https://thenounproject.com/)
User computer

Login node Computer nodes

Accelerators

Storage
Scheduler

SSH connection

Dedicated network
Submit 
job

Dispatch 
jobs



2Components

Computer node (Wikipedia)
Acts basically like a computer

Intel sandybridge (die) 
(https://www.anandtech.com/)

• Socket (CPU)
• RAM
• Networking
• Cooling
• Local storage
• ...

https://www.anandtech.com/


2Components: GPU / Accelerators

• GPGPU: general-purpose computing on GPU

• Instead of a few powerful cores (CPUs), many less powerful cores

• Consumer grade GPU: provide good FLOPS for single precision operation, not 
for double precision

• Dedicated class of cluster grade GPU (e.g., NVIDIA Ampere or AMD Instinct)

• Future of HPC?

Ampere (nvidia.com)
AMD Instinct (amd.com)



2Interaction with the supercomputer

You interact through the command line 
(Linux, Mac) or specific softwares
(Windows, Mac).

➢SSH client for connection

➢Terminal for writing and receiving 
text

➢Graphical user interface is possible 
(but not yet available everywhere)



2The scheduler

• For each "job", the scheduler (e.g., SLURM) 
requires to know time/memory/number of 
processor and node and tries to fit the job 
when a slot is available.

• Different clusters have different purposes, 
e.g.,
• High-memory application,

• Small and fast jobs,

• Nodes with accelerators, ...



2

How to use such large 
resources efficiently?

Solutions... and challenges



2Particularities of supercomputing

• Advantage of supercomputing
• Larger size: some problem requires large amount of memory

• More speed: some problem requires long time to be solved

• Solution … And issues:
• More memory (but storage hierarchy)

• Parallelism (… has inherent difficulties)



2Tackle speed: parallel computing

• To achieve such 
performances, the 
main idea is to rely on 
parallel computing : 
executing many 
operations in a single 
instance of time.

• But the program needs 
to be adapted for such 
purpose!

Serial world: 1 worker (person) to build

Images from LEGO (lego.com)

Parallel world: 2 workers to build → about 2 times faster



2Speedup is never what you expect...

In most cases, a problem is never fully parallelizable (i.e., embarrassingly
parallel)

Ttot,3 = 4
Speedup = Ttot,1 / Ttot,3 = 2

3 workers:Non 
parallelizable 

(25%)

Parallelizable (75%)

Ttot,1 = 8

1 worker:

Ttot,2 = 5
Speedup = Ttot,1 / Ttot,2 = 1.6

2 workers:

→ No matter how fast the parallel portion, we will always be limited by the 
serial part.



2Speedup is never what you expect

Amdahl's Law:

S: actual speedup

s: serial portion of the code (in %)

P: parallel portion (in %)

N: number of processors
Image from Wikipedia (wikipedia.org)

This address the question "how much processors can I use for a given problem?"



2Strong vs weak scaling

1000 500 333

1
0

0
0

5
0

0 3
3

3

Strong scaling: size of the 
problem is constant and 
split across additional 
processors

333

3
3

3

Weak scaling: the size of 
the problem is the same 
for each processor.



2Weak scaling is great

S: actual speedup

N: number of processors

S: serial fraction (in %)

If we increase the size of the 
problem when more 
processors are added,

Image from Wikipedia (wikipedia.org)

This address the question "how much can I increase the size of my problem such that the execution
time is the same as if I ran the problem with only one process?"



2But there are always overheads

Shared memory model: all workers (or, 
here, person) are working on the same 
pool of data (or, here, lego pieces). Small 
overhead due to synchronisation (all 
person cannot work on the same part of 
the model at the same time).

Distributed memory model: each worker (or, here, person) is 
working on its own set of data (or, here, lego pieces). Generally, 
more efficient (no collaboration during work), but overhead due 
to communication (or, here, distribute pieces in the beginning and 
assembling the result at the end).

Generally, the two are mixed. It also requires a good load balancing (i.e., every person has 
the same amount of work to do). It is not that easy to achieve.



2Also important: storage hierarchy

Core Core

L1 / L2 L1 / L2

L3

RAM

R R R R

Local storage
(SSD or disk)

External storage

Another node

Accelerators

• The further away from the core, 
the slowest (but, generally, the 
more capacity)

• I/O may not be parallel

• Communication is a bottleneck 
when using multiple nodes

• Efficient movement of data to and 
from an accelerators

CPU/GPU

Computer node Icons from the Noun project (https://thenounproject.com/)

PCI

Network



2Tools of the trade

Parallel programming:

• Vectorization (core level)

• Threading / OpenMP (node level)

• CUDA / HIP / OpenCL / OpenACC / OpenMP (accelerator level)

• Socket / MPI / PGAS (cluster level)

Optimized libraries:

• BLAS / LAPACK / MKL (linear algebra)

• FFTW (fast-Fourier transform)

• HDF5 / netCDF (parallel I/O)

Good news for computer rookies: Lots of scientific programs already built with parallel version and 
available on the supercomputers → no programming skills needed! 



2

Conclusions



2Conclusions

• Parallelization is at the core of the efficiency of supercomputers

• There are several parallelization paradigms with their own advantages 
and drawbacks

• You don’t need high programming skills to do supercomputing

→ More information on
• https://www.enccb.be/

• https://www.ceci-hpc.be/

• https://www.vscentrum.be/

https://enccb-test/
https://www.ceci-hpc.be/
https://www.vscentrum.be/


2

Funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking
(JU) and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy,
Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway,
Türkiye, Republic of North Macedonia, Iceland, Montenegro, Serbia under grant agreement No 101101903.

Thanks!


	Slide 1
	Slide 2: Outline of this presentation
	Slide 3
	Slide 4: What are supercomputers?
	Slide 5: Anatomy of a cluster
	Slide 6: Components
	Slide 7: Components: GPU / Accelerators
	Slide 8: Interaction with the supercomputer
	Slide 9: The scheduler
	Slide 10: How to use such large resources efficiently?
	Slide 11: Particularities of supercomputing
	Slide 12: Tackle speed: parallel computing
	Slide 13: Speedup is never what you expect...
	Slide 14: Speedup is never what you expect
	Slide 15: Strong vs weak scaling
	Slide 16: Weak scaling is great
	Slide 17: But there are always overheads
	Slide 18: Also important: storage hierarchy
	Slide 19: Tools of the trade
	Slide 20: Conclusions
	Slide 21: Conclusions
	Slide 22

