

High fidelity simulations of the boundary layer transition on a high-pressure turbine vane in view of accurate predictions of the heat flux distribution

> LUMI-BE user day Brussels, Belgium November 6, 2023

T. S. Cação Ferreira^{1,2}, <u>M. Rasquin</u>³, T. Toulorge³, K. Hillewaert^{3,4} ¹von Karman Insitute, ²University of Louvain, ³Cenaero, ⁴University of Liège

Contact: tania.sofia.cacao.ferreira@vki.ac.be, michel.rasquin@cenaero.be

High-fidelity CFD @ Cenaero

- High-resolution DNS and wall-resolved LES on realistic geometries
 - Accurate representation of flow phenomena in boundary layers near solid surfaces
 - Separation
 - Shocks
 - Transition and turbulence
 - Main enablers
 - Superior accuracy of high-order methods like DGM
 - Access to and efficient exploitation of supercomputers

- Research themes for the application of DNS and LES
 - Development of high-resolution numerical methods & tools
 - Applications: high fidelity CFD of complex flows
 - Data-driven turbulence modeling

Development of high-resolution numerical tools Highly accurate numerical wind tunnel for turbulence in turbomachinery

Cenaer

High-order Discontinuous Galerkin Method Why DG?

- Unstructured meshes and complex geometries
- High accuracy
 - Guaranteed order of convergence p+1
 - No degradation near size jumps/walls
 - Low dissipation/dispersion error
- High efficiency

PROD-F-015-02

- Data locality
- Compact matrix-matrix operations
- High scalability (MPI/OpenMP/GPU)

Aircraft gas turbine engine High pressure turbine vane LS89

- 2021 PhD thesis Tânia Sofia Cação Ferreira + follow up
- **Boundary layer transition and** convective heat transfer of the high-pressure turbine vane LS89 **Complementary experimental** and numerical work

High-pressure turbine

UCLouvain Cenaer

5

Aircraft gas turbine engine Highest temperature during engine cycle

DNS of an isothermal and reacting combustion swirler (Moureau et al. 2010)

Combustor exit/HPT inlet flow:

- Temperature = 500-2000K
- Turbulence intensity = 10-30%

1st turbine_stator faces the hot turbulent combustion flow

- Accurate heat transfer predictions are <u>crucial</u>!
 - Requires accurate prediction of the boundary layer

Aircraft gas turbine engine *Transition parameters and modes*

Boundary layer transition is affected by:

High turbulence levels (1 to 30 %)

Acceleration parameter
$$\left(K = \frac{v}{U_{\infty}^2} \frac{dU_{\infty}}{ds} = -2 \leftrightarrow 1 \cdot 10^6\right)$$

- b Variable surface curvature and roughness
- Variable surface
- \checkmark Wide range gas-to-wall temperature ratios (1.1 1.6)

And can occur through:

Schlichting (2000)

... and also **separated-flow** transition, **reverse** transition, **wake-**, **shock-**, **film-cooling-induced** transition, ...

Aircraft gas turbine engine Boundary layer transition and heat transfer

Heat transfer along the turbine vane

Cenaero

8

Domain and boundary conditions *MUR235 configuration*

High-order numerical simulations with Argo Mesh M1

2nd order curvilinear mesh generated with GMSH

Gmsh

A

Mesh		M1
Oz layer	ſS	40
Prism elem	ents	80
Hexahedron e	elements	2M
Degrees of fr	reedom	127M
Maximum	X+	83
Maximum	У+	~1
Maximum	<i>Z</i> ⁺	~100
CPU hours/flc inlet + ch	ow over ord	1M Zenobe

Flow visualisation Density gradient

Acoustic waves reflection on the suction side

Wake vortex shedding

Acoustic waves formation at the trailing edge

11

Normal shock

Refined inlet turbulent structures

Heat transfer for past and recent experiments Mesh M1

Line – CFD Symbols - EXP

Artificial viscosity effect Mesh M1

Two values of artificial viscosity considered:

- Nominal AV
- Lower AV (halved AV)

Very different heat transfer profiles

<u>Take-away:</u> artificial viscosity was not possible to be decoupled from the underresolved boundary layer --> keep AV value and refine mesh

PROD-F-015-02

Artificial viscosity effect Mesh M1

LUMI-BE user day – Brussels 2023

© 2023 Cenaero - All rights reserved

Numerical simulation Mesh M2

2nd order curvilinear mesh generated with GMSH

Mesh	M1	M2
Oz layers	40	74
Prism elements	80	148
Hexahedron elements	2M	3.7M
Degrees of freedom	127M	236M
Maximum x ⁺	83	83
Maximum y+	~1	~1
Maximum z+	~100	~50
CPU hours/flow over inlet + chord	1M Zenobe	0.95M Galileo

Heat transfer Mesh M2

Heat transfer for mesh M2

Numerical simulation Mesh M3

2nd order curviline generated with (ear mesh GMSH	Gmsh		
Mesh	M1	M2	<u>M3</u>	Structured hexahedra for the
Oz layers	40	74	<u>85</u>	boundary layer region – refined for x ⁺ ~ z ⁺
Prism elements	80	148	<u>510</u>	
Hexahedron elements	2M	3.7M	<u>3.3M</u>	
Degrees of freedom	127M	236M	<u>212M</u>	Mesh refinement at the
Maximum x ⁺	83	83	<u>50</u>	inlet region facing the leading edge - coarsened
Maximum y+	~1	~1	<u>~1</u>	
Maximum z+	~100	~50	<u>~45</u>	
CPU hours/flow over	1M	0.95M	<u>0.8M</u>	
inlet + chord	Zenobe	Galileo	Zenobe	
			<u> † Lumi</u>	Mesh refinement at the wake regions (direct and periodic)

Mesh cross section (2D)

17

Heat transfer Mesh M3

EuroHPC

Heat transfer for mesh M3

Parameters			
Mesh	M1	M2	<u>M3</u>
Oz layers	40	74	<u>85</u>
Prism elements	80	148	<u>510</u>
Hexahedron elements	2M	3.7M	<u>3.3M</u>
Degrees of freedom	127M	236M	<u>212M</u>
X+	83	83	<u>50</u>
<i>y</i> + (max)	~1	~1	<u>~1</u>
Z ⁺	~100	~50	<u>~45</u>
Partitions	2160	3960	<u>3456</u>
CPU hours/flow over inlet + chord**	1M Zenobe	0.95M Galileo	<u>0.8M</u> <u>Zenobe</u> + Lumi

Conclusions:

PROD-F-015-02

- Highly sensitive boundary layer to the facility environment
- Strong dependence on the mesh resolution, and consequently, on the artificial viscosity
- New experimental facility and refined numerical simulations tend to converge towards the same heat flux prediction

Ongoing work and perspectives

 Investigate the effect of mesh resolution and artificial viscosity
-> Mesh M4

Lumi impact!

- Simulate a similar experimental test case at higher turbulence intensity (*Tu*_∞=22%) for more engine representative numerical studies.
- Investigate the temperature effect on the heat flux, complementary to dedicated experimental campaigns

Parameters

Mesh	M1	M2	M3	<u>M4</u>
Oz layers	40	74	85	<u>153</u>
Prism elements	80	148	510	<u>918</u>
Hexahedron elements	2M	3.7M	3.3M	<u>10.9M</u>
Degrees of freedom	127M	236M	212M	<u>700M</u>
X ⁺	83	83	50	<u>25</u>
y⁺ (max)	~1	~1	~1	~1
Ζ+	~100	~50	≈45	<u>25</u>
Partitions	2160	3960	3456	<u>9984</u>
CPU hours/flow over inlet + chord**	1M <i>Zenobe</i>	0.95M Galileo	0.8M Zenobe + Lumi	Lumi

Broader view

- High-resolution simulations as part of a "multi-fidelity" paradigm
 - Physical understanding to support and complement experimental testing
 - Performance prediction in off-design conditions
 - Data generation for lower-fidelity model calibration (RANS, wall models)
- Advanced numerical framework
 - High-order numerical scheme
 - Scalable
 - Post-processing and statistical analysis
- Improved physical fidelity
 - Turbulence injection in DNS/LES for aerodynamics (free stream, turbulent BL)
 - Shock capturing (ULiège)
- Applications
 - Academic aerodynamic flows
 - Turbomachinery flows

Access to computational resources is essential

20 Cenaero

- The present research benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under grant agreement numbers 1117545
- We acknowledge PRACE for awarding us access to Gallileo hosted by CINECA in Bologna, Italy
- We acknowledge EuroHPC for awarding us access to LUMI hosted by CSC in Kajaani, Finland

21

Thank you for your attention

