

Design of novel DPP8 and DPP9 inhibitors using cosolvent molecular dynamics simulations

Olivier Beyens, Hans De Winter

Why are we interested in DPP8/DPP9?

DPP9 inhibition leads to cell death in acute myeloid leukemia (AML) cell lines

5-Year Survival rate AML 31.7% Incidence: 1% of cancer cases (4.1/100,000 py) ¹

Role DPP8 less clear, selective inhibitor could help elucidate role

(1) Johnson, D.C., et al.Nature Medicine 24, 1151-1156 (2018) (2) U.S. National Cancer Institute (2013-2019)

Why is selectivity difficult?

Overlap of DPP4, DPP8 and DPP9 :

Our solution: Cosolvent molecular dynamics

Regular molecular dynamics setup

Our solution: Cosolvent molecular dynamics

Cosolvent molecular dynamics setup

Cosolvent molecular dynamics simulations

LUMI: Powerful machine

Timings:

- DPP4 (366K atoms): 29 ns/day
- DPP8 (468K atoms): 25 ns/day
- DPP9 (419K atoms): 27 ns/day

➡ Previous longest simulation DPP8/9: 2 x 200 ns¹

How can we design new inhibitors?

Deep dive DPP9

DPP9 binds the inflammasome sensor NLRP1¹

Fragment linking example

Including PART tool development

Ligand design using fragment linking

10

