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Materials Modelling

2003 - High field transport phenomena in wide bandgap semiconductors.
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Materials Modelling

2008 -Carrier dynamics in silicon and germanium nanocrystals.
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Materials Modelling

2008 -Carrier dynamics in silicon and germanium nanocrystals.
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Materials Modelling

2012 - Electronic and thermal transport properties of 2D materials
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th we need HPC power
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Roadway lighting Traffic signal

Solar radiation
Photovoltaic effect

Piezoelectric sensors - o Pipe-pavement-
Traffic loading thermoelectric
Traffic loading (stress/strain) generator
(PP-TEG)

Temperature gradient
: Thermoelectricity
Pump I N

Energy management

Energy storage
Geothermal energy

Energy usage
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Why we need HPC power
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th we need HPC power

Many — Body Quantum Machine Learning Interatomic
Simulations for Excitons Potentials for Materials
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th we need HPC power

Many — Body Quantum
Simulations for Excitons
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Why we need HPC power
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Excitons

Density Functional Theory GW calculations BSE calculations
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Excitons

SCIENCE ADVANCES | RESEARCH ARTICLE

CONDENSED MATTER PHYSICS

Giant enhancement of exciton di
two-dimensional semiconductor
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Open Access
This article is licensed under CC-BY 4. @ ®
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Excitons
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Excitons

Density Functional Theory
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Excitons
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. State- and Momentum-Dependent Nonlinear Stark Effect of
.Interlayer Excitons in Bilayer WSe,
+ Cem Sevik* Engin Torun, Milorad V. Milofevi¢, and Fulvio Paleari*
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Excitons

NANO o5

pubs.acs.org/NanoLett

. State- and Momentum-Dependent Nonlinear Stark Effect of
. Interlayer Excitons in Bilayer WSe,

s Cem Sevik,* Engin Torun, Milorad V. Milosevic, and Fulvio Paleari*
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Intrinsic Control of Interlayer Exciton Generation in Van der Waals
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Optical properties of metallic MXene multilayers through advanced first-principles calculations
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th we need HPC power

Machine Learning Interatomic
Potentials for Materials
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ML Interatomic Potentials
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ML Interatomic Potentials

~ 1600 Atoms
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ML Interatomic Potentials
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ML Interatomic Potentials
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ML Interatomic Potentials
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ML Interatomic Potentials
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ML Interatomic Potentials

TABLE |. Room-temperature lattice thermal conductivity values of monolayer MoS, and MoSe, collected from the literature, based on first-principles, molecular dynamics, and
experimental studies. All reported values have been rescaled according to the out-of-plane lattice constants used in this work: 6.15 A for MoS, and 6.47 A for MoSe,. Italicized

values indicate that the original source did not provide an explicit out-of-plane lattice constant.

First-principles

MoS, MoSe,

Method K (Wm~ K1) Method K (Wm™ K1)
DFT-BTE™ 151.36 DFT-BTE™ 54.13
DFT-BTE®’ 135.20 DFT-BTE"' ~ 70
DFT-BTE® 130.20 DFT-BTE® ~ 60
DFT-BTE™ 130.00 DFT-BTE® 54
DFT-BTE® 103.00 DFT-BTE®® 46.2
DFT-BTE®’ 81.42 DFT-DFPT-Slack Model*® 17.6
DFT-BTE™ 89.56

DFT-DFPT-NEGF®’ 24.52

DFT-BTE (3P, 3ph44ph)70 133.5,27.7

DFT-BTE®® 82.2

DFT-BTE* ~75

DFT-DFPT-Slack Model®® 33.6

DFT-DFPT-Umklapp Model”’ 29.2

Molecular Dynamics

REBO-LJ-HNEMD”* 123.66 SW-NEMD* 24.80
(SW13, SW13E, SW16)-HNEMD"* 535.85, 203.98, 290.65 SW-EMD-Green-Kubo'’ 40.19
TB-(EMD-NEMD)*’ 0.97, 1.22 SW-NEMD-(AC, ZZ)"' 17.76, 18.93
SW-NEMD> 32.89 SW-NEMD-(AC, ZZ)"° 43.88,41.63
SW-RNEMD-(AC, ZZ)* 32.95, 53.91 MLFF-NEP-HNEMD'” 77.73
SW-EMD-Green-Kubo'’ 90.00 SW-SED** 29.18
SW-EMD-Green-Kubo'* 116.99

SW-NEMD-(AC, ZZ)"° 101.39, 110.26

SW-NEMD"” 19.95

MLFE-NEP-HNEMD"’ 161.62

SW-SED* 89.4

Experimental

Raman (Heat Diff. Modeling)’ 36.46 Mech.Exf.-Raman (vacuum, air) "’ (20, 250)
Raman (Heat Diff. Modeling)”” 70.80 Mech.Exf.-Raman® 59
CVD-RTD™ 30

Mech.Exf.-Raman® 84

CVD-Opt. Mod.”* 19.8

CVD-LHD® 13.3

CVD-MJH"” 24-100
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ML Interatomic Potentials
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ML Interatomic Potentials
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View Article Online

View Journal | View Issue

M) Check for updates Gaussian approximation potentials for accurate
******** thermal properties of two-dimensional materialst

Cite this: Nanoscale, 2023, 15, 8772

Tugbey Kocaba§,€D*a Murat Keceli, ©+° Alvaro Vazquez-Mayagoitia ©+° and
Cem Sevik [ <4

Thermal conductivity limits of MoS, and MoSe.:
Revisiting high-order anharmonic lattice dynamics
with machine learning potentials
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