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Hello World!

* Fabio Bacchini, PhD

 PhD in 2018, postdocs in Germany, Belgium, USA

e Since 2022: Assistant Professor at the Centre for
mathematical Plasma Astrophysics, KU Leuven

e Research group: 9 PhD students, 7 postdocs

e Research focus:
e Heliospheric plasma physics 5 ot
* High-energy astroplasma physics gl
* High-performance computing Lol U
* Numerical methods L. L .
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What is a Plasma?

* A state of matter where individual charged particles are free to move
* Found on Earth and in space

* The Universe is 99% plasmal!!
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Plasmas in Space

e The Sun is made of plasma

e The Earth is surrounded by plasma

* Each and every galaxy is made of plasma

Black holes are surrounded by plasma




What Makes Plasma so Interesting?

Most importantly: Beautiful visuals!

-~ “ _ g - N

Most common state of matter in the Universe

Important practical applications
* Fusion

* Propulsion

* Torches

Earth is at risk due to solar activity!

By studying plasmas, we can study unreachable \
space environments (e.g. black-hole surroundings) k \



“Multiscale, Multiphysics”

[EHT Collaboration 2019]




How Do We Study Plasmas?

Plasma
Physics
I Experiments I Theory I Observations
Pgn g Simulations
I aper I

Analysis
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Supercomputing for Astroplasmas

* (Astro)plasma research requires supercomputing facilities
* Typical simulations run on (hundreds of) thousands of CPUs to speed up calculations
* New (for scientists): Exploit GPUs and exascale

* Constant need for efficient visualization workflows!
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A Journey Through Physics and Scales
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Plasma simulations have addressed a great variety of astrophysical
phenomena and scenario

* Approaches vary significantly depending on length/time scales, regimes,
and energies involved

e Extra physics may need inclusion:
* Collisional effects
 Multiple particle species
e Radiation effects
* QED effects
* Forcing effects (expansion/compression, shearing, ...)
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" Boundary where'sun's solar

wind balances with pressure of

‘intérstellar medium.

Heliosphere

An enormous expanse marked by
the outer reaches of the sun's
magnetic field and solar wind.




Low Energies: The Heliosphere
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 Main plasma structures:
e Solar corona (loops, holes, ...)
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* Main plasma phenomena: l i
* Coronal mass ejections
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* Solar-wind expansion g ‘%‘,p
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Low Energies, Large Scales: Coronal Loops
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Low Energies, Large Scales: CME Shocks
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= * Full-particle simulation
e Typical run ~5M CPUh
* Difficult parallelization
o Fox et al, 2016
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Low Energies, Large Scales: Earth’s Magnetosphere

* Full-particle simulation
e Typical run ~2-5M CPUh
* Very long physical times

2 - need better methods
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Low Energies, Small Scales: Solar-wind Expansion

* Full-particle simulation
e Typical run ~10M CPU! A
* Very long times and large scales

Peters de Bonhome+ in prep.
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High Energies: Compact-object Environments

[EHT / Hotaka Shiokawal] [EHT/BHC J. Davelaar]




Intermezzo: A Black Hale in a Computer
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Intermezzo: A Black Hale in a Computer
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High Energies, Large Scales: BH/NS Magnetospheres

e Fluid simulations (mostly)
* Very large scales, very long times

Ripperda&Bacchini+2019, Ripperda+2020
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High Energies, Small Scales: Collisionless Accretion

ognm)] @ Fyll-particle simulation

e Typical run ~20M CPUh!

* Very large scales, multiple species
Bacchini+2022,2024, Sandoval+2024,
Gorbunov+2025
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High Energies, Small Scales: BH Accelerators

e Full-particle simulation
e Typical run ~20M CPUh, 3k GPUh A
* Very large scales, multiple species

Bacchini+2025, Groselj+2024
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High Energies, Small Scales: BH Accelerators
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* Full-particle simulation
e Typical run ~5M CPUh
* Very large scales, multiple species

Granier+2025
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High Energies, Small Scales: BH Accelerators

B | | e Full-particle simulation
f 8- e Typical run ~3k-30k GPUh

e Power of GPUs!

MACRO

Chernoglazov+ in prep.
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Summary

* Plasmas are cool! And they are everywhere |

* HPC-powered full-particle models allow us
to study plasmas at different time, length,
and energy scales

* Basic plasma processes ubiquitous in the
Universe = We can interpret observations!

e Ultimate goals:

* Uncover unknown processes giving rise to
radiation

* Explore theories of gravity beyond GR
* Protect ourselves from solar activity
* Fun!
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