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Project objectives

® Enable high-fidelity turbomachinery simulations at realistic
operating conditions by extending the predictive capabilities of
the massively parallel CFD code YALES-2 using Tier-0 systems.

® Validate the compressible YALES-2 solver for turbomachinery
flows through large-scale simulations and quantitative
comparisons with experimental data.

® Complement experiments with time and space-resolved,
three-dimensional flow predictions to characterize jet-engine
components and access flow physics beyond experimental reach.



Basic principles of jet propulsion




Basic principles of jet propulsion
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Thrust is obtained with high mass flow rate or high jet velocities




Basic principles of jet propulsion

A propeller moves a large amount of air

at a low velocity

A jet engine moves a small mass

of gas at high velocity




Basic principles of jet propulsion
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Turbofan engine
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Thrust is obtained with high mass flow rate and low jet velocities



Basic principles of jet propulsion

_my (¢ = c5) Core thermal efficiency 40-50%
" Tk, LHV
T -
n, = 20 = Propulsive efficiency 60-80%
mg (C€2 o C(%>
MTp = e Mlp Overall / thermopropulsive efficiency

High mass flow rate and low jet velocities provides

the best propulsive efficiency



Challenges in civil aircraft jet propulsion

Evolution of propulsive systems is leading towards engine with larger fan diameter
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e Better component aerodynamics



Modern geared turbofan (GTF)

(The Fan is driven by the LPT A
=> close link between their performances
The fan produces 80 % of the thrust.
The LPT is a major component in the design of
high-efficiency geared turbofans.
. _J
4 : . )
The fan speed should remain relatively low
- low centrifugal forces
- avoid tip blade chocks
- low noise
=> |lower LPT rotational speed(direct-drive)
=> reduction in LPT efficiency /! D
Increase in LPT rotational speed )
=> gearbox (decoupling of FAN and LPT speeds)
e High - Speed Low-Pressure Turbines (HS-LPT)
e operation at transonic exit Ma number (0.6 — 0.9)

_ e |ow Re number flow regimes y
( )
LPT operate in flow regimes that favour
boundary layer separation and profile losses.
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GTF gearbox power vs. car engine power
300 hp
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"Has to transfer more than
200 times the power of an
\advanced car gearbox ! y




GTF Gearbox challenges

® Lubrication : limits frictional losses, heat generation, load-bearing
® Material strength & durability : high contact stresses, fatigue, wear, life
® Weight : transmits tens of MW with minimal mass (fuel efficiency...)

® Engine integration for thermal management, noise, maintenance...

50 MW must be transmitted
through the 34 teeth of the
main shaft gear!




GTF Low pressure turbine (LPT) challenges

RR UltraFan
CFM RISE

Source: GE Aviation The Blog

® Geared engine architecture allows decoupling the fan and turbine shaft speeds = LPT
efficient at higher speeds

® Moderate Re (50k— 150k, low p) and transonic speeds (exit Mach > 0.8) impact the
turbine unsteady aerodynamic (boundary layers, shocks)and performance
® Gap in research and industry experience in this new design space

® Lack of accessible experimental data to provide boundary conditions and validation
data for CFD codes



Spleen Low pressure turbine blade cascade

® SPLEEN is a Cleansky project that contributes to the Ultra High Propulsive Efficiency
(UHPE) ground test demonstrator for short/medium range aircrafts.

® Collaboration between VKl and Safran Aircraft Engines.

® Provides an open source database of geometry and experiment useful for CFD codes
validation

® Aim : Validate the compressible YALES-2 solver on this flow with quantitative

comparisons with experimental data.
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YALES2 Flow Solver

>

(Features

Developed at CORIA (V. Moureau, G. Lartigue, P. Benard) 41

Structured and unstructured meshes (complex geometries), adaptive grid refinement

3D Navier-Stokes equations (incompressible, variable density, compressible)
Double domain decomposition [5]

Highly efficient solvers for linear system inversion (PCG, DPCG)

Node-based 4th order central finite volume method and 4th order time integration

Suited for massively parallel computing (>32 000 procs)

Y A LEES 2

_/

Time: 0.02 ms

[4] YALES2 web site, https://www.coria-cfd.fr
[5] Moureau et. al., CR Mecanique, 2011
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https://www.coria-cfd.fr

Scalability of YALES2 on LUMI

YALES?2 strong scaling on LUMI. Mesh: 134 millions tetrahedrons YALES2 weak scaling on LUMI. 131 072 elements per core
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Governing equations

® Favre averaged LES equations for compressible flows
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® Dynamic actuator line method for turbulence grid generator

F(X.7) = - > (LaeL + Daep) 7 (X = Xa))
a=1

CL(t) = (CL) +(CA) > V2 sinQr fr + ¢)
Cp (1) = (Cp)

DALM introduces temporal fluctuations in CL and CD coefficients



Dynamic actuator line turbulence
generation

X Plane Ref.

|

Dynamic actuator line method allows to reproduce the same VKI wind tunnel
turbulence conditions (TI, Lt)




Computational domain & Gmsh mesh
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Computational time

Spin—Up . Statistics i
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384h wall clock) | 298h (wall clock)
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T/ Te [_]

® 10 convective times based on blade chord 7. = 86 h (wall clock)

® Typical run uses 768 cores

® Computational cost for one complete run : 523000 cpuh



3D Flow visualization (clean inflow)
Flow features of interest

/

Turbulent flow
reattachment




3D Flow visualization (clean inflow M=0.95




3D Flow visualization (Turb. inflow M=0.70)

The wake vortical structures exhibits reduced coherence due to its interaction with
turbulent structures from the free-stream flow, this effect is more pronounced at low Mach
numbers.




Effect of inflow turbulence
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Inlet turbulence accelerates the development of turbulent structures on both sides,
modifies shear-layer dynamics, and weakens vortex shedding coherence




Mach number distribution
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Wake Turbulent kinetic energy
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Numerical simulations make it possible to extract quantitative information in flow
regions where experimental access is limited.



Wake kinetic energy loss coefficient

101 Mout,is = 0.70 Mout,is = 0.80 Mout,is = 0.90
2.8
< PSS, S§S— < PSS, S§S—— < PSS SS—>»
2.4 A .
—&— Exp.
2.0 4 ==+ LES Clean
m— LES Turb.

Moytis = 0.95

PSS S55S ——>

A

1.00 0.00

0.25 0.50 0.75

1.00 0.00

0.25 0.50 0.75

000 025 050 0.75
y/g [-] y/g -] y/g [-]
4 r=—1
2 1 — E 4

U P,

f p— 1 — —_— — —

UiS PS T
1 B Pin,t

1.00 0.00

0.25 050 0.75 1.00

y/g -]

Better agreement of peak loss level when turbulence is properly modeled



Conclusions & perspectives

Conclusions

® DALM enables realistic inflow turbulence matching experiments

® Turbulence injection improves blade loading and separation prediction

® Turbulence has a strong impact on transition and reattachment at low Mach
® Shock-driven physics dominate at highest Mach numbers

® \Wake losses are better predicted with realistic inflow

Perspectives @

Counter
vortex

] -'

® Simulate passing bars with moving DALM A\ o
® Simulate 3D effects : end walls 7 2747Y
bo;mdary P
. ayer ) S
® Simulate purge tlow \ “

Corner
vortex

Landfester et al. 2023
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