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1970 - Now: Slow but steady progress

REVIEW

doi:10.1038/nature14956

The quiet revolution of numerical
weather prediction

Peter Bauer!, Alan Thorpe' & Gilbert Brunet?

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is
performed every day at major operational centres across the world.

ECMWF



Tl Reanalysis: Predicting the past
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Yl Reanalysis: Predicting the past

RMI

P
Observations Data-assimilation Analysis
%
Raw forecast Model



JI ECMWEF ReAnalysis v5 (ERA-5)

RMI

Provides the most complete global picture
currently possible of past weather and climate.

Global Observing System ECMWF model
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e ~ 30 km resolution

e crucial for climate research

e 5 PB of data
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Yl Machine Learning Weather Prediction:

RMI

A Second Revolution
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YN Initial Attempt

RMI
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Yl Machine Learning Weather Prediction:
A Second Revolution

Skill of MLWP-models
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' JEDueben & Bauer 2018

RMI

z500(t+At) = z500(t) + Az500

Train ~ 16 million parameters for 1860 outputs



“An ability to forecast reliably the probability of
highly nonlinear phenomena in the medium range
using NWP, requires high-quality models run from
high-quality initial conditions. To do this with the

same level of skill using Al would likely require an
exceptional (and hence unrealistic) amount of

training data.”
- Palmer 2020

“However, there is still a large gap to current
state-of-the-art high-resolution weather models
that is unlikely to be closed with a purely

501 Weyn et al. 2019

251 data-driven approach because not enough training
data exists.’

Skill relative to IFS

Dueben & Bauer 2018 Rasp

- Rasp and Thuerey 2021

2018 2020
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JI MLWP: A Second Revolution

RMI
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Y UKeisler 2022: Graph Neural Networks

RMI

3d atmospheric 3d atmospheric
state at time t state at time t+6hr
78 channels 78 channels
per (lat, lon) node per (lat, lon) node

(+solar, landsea, etc)

1. Encode l (%) 4. Add

from physical variables on the state change to input

lat/lon grid to latents on state to determine new state
icosahedron grid

using message-

passing GNN =
Latent state Latent state Change in 3d
atmospheric
PR, —_— state
256 channels 256 channels
per node per node 78 channels

per (lat, lon) node

2. Process 3. Decode

using 9 rounds of from latents on icosahedron
message-passing GNN on grid to physical variables on
icosahedron grid lat/lon grid using

message-passing GNN

Keisler 2022



JUKeisler 2022: Graph Neural Networks

RMI
Encoder Processor Decoder
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Train ~6.7 million parameters for ~5 million outputs



Y UKeisler 2022: Graph Neural Networks

RMI
Encoder Processor Decoder
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JUKeisler 2022: Graph Neural Networks

RMI
Encoder Processor Decoder
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Y UKeisler 2022: Graph Neural Networks

RMI
Encoder Processor Decoder

2. Update mesh nodes
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JI MLWP: A Second Revolution

RMI
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JUMore than hype

3 day Z500 RMSE Skill Score vs Publication Time
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I More than hype

RMI
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Anemoi Framework

Provide complete toolkit to develop data-driven

meteorological forecasting covering the whole

ML lifecycle

Anemoi is developed through a collaborative

European initiative
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Anemoi Catalogue

Anemoi Utils

EMS Technology Achievement Award 2025 for

The EMS Technology Achievernent Award for significant technology achievements
and innovations in the field of meteorology and earth observation -
The European Meteorological Society s awarding the EMS Technolagy Achlevement Award 2025 to the Anemol

Frameworic

The Anemoi Framework (s an excellent example of o European
collaborative effort, which offers enhanced forecast accuracy through the

use of advanced machine-fearning methodologies. The flexible open-
source approach enables various Furopean stakeholders to further

integrate Al in operational forecasting.

https:/lwww.emetsoc.org/ems-technology-achievement-
award-2025-for-anemoi/



' JBAnemoi in a nutshell

RMI
) nttps://github.com/ecmwi/anemoi

https://anemoi.readthedocs.io

o
Dataset

. = Checkpoint "
anemol — anemol : anemaoil
% datasets “ % training @ % inference
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/ Model
NetDCF $.
Grib
CDS
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models
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graphs
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Y IBuilt on shoulder of giants

RMI

e Don'’t reinvent the wheel: rely on existing tools

e Maindependencies

O PyTorch ° PyTorch Lightning ‘\é""\ PYyG

T

xarray

b Zarr

\ -
H earthkit
74

Hyorit~ A\Pydantic  mlifiow




b4

e Open-Source
o Collaboration with member states

e Focuson best use of resources (File systems, GPUs, ...)
o Do not starve the GPUs during training, due to slow 1/Os

e Makes Research-to-operations as simple as possible
o Inference and training are independent
o Each component collects metadata that can be used by the others



High resolution

data-driven weather
forecasting




Y lLeverage high-resolution datasets

RMI

e CERRA-dataset
o 5.5km
o 3é6years




Tl everage high-resolution datasets

CERRA - dataset

(@)
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5.5km
36 years

Limited Area Model
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High resolution
Lower resolution boundary

add boundary forcing




Tl everage high-resolution datasets

e CERRA -dataset
o 55km
o 3é6years

e Limited Area Model

o Highresolution
o Lower resolution boundary

e Learnonlyonregional domain




!A Model architecture

e Encoder - Processor - Decoder
e O6htimestep

e Graph-Transformer (1024 channels) — 246 million trainable parameters

Encoder Processor Decoder







Y Training setup

e Model nolonger fitson 1 GPU
o Model-parallel: model is sharded over multiple GPUs
o 8 GPUs (=1node)

e Data-parallel: multiple samples divided over multiple GPUs
o batchsize 16
o 16 nodes

= 128 GPUs x 19 days

= ~30.000 GPUh



JELUMI environment

RMI

e Use Cotainr to build container from base container
o ROCm 6.0.3 + torch2.3 + anemoi

e But also developments needed
o Container: ROCm 6.0.3 + torch2.3 + parts of anemoi
o  Virtual environment: anemoi-graphs | anemoi-training

e Someissueswith NCCL timeout

Epoch 2: 0%| | 977/253732 [1:24:43<365:16:44, 0.19it/s, v_num=b133, train_mse_loss_step=0.0198, val_mse_loss_step=0.0218,
val_mse_loss_epoch=0.0211, train_mse_loss_epoch=0.08239]
Epoch 2:  0%] | 977/253732 [1:24:43<365:16:51, 0.19it/s, v_num=b133, train_mse_loss[rank111]:[E ProcessGroupNCCL.cpp:563] [Rank 7]

Watchdog caught collective operation timeout: WorkNCCL(SeqNum=1970765, OpType=ALLGATHER, NumelIn=18446744073709551615,
NumelOut=18446744073709551615, Timeout(ms)=600000) ran for 600026 milliseconds before timing out.

[rank109]:[E ProcessGroupNCCL.cpp:563] [Rank 5] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=1970765, OpType=ALLGATHER,
NumelIn=18446744073709551615, NumelOut=18446744073709551615, Timeout(ms)=600000) ran for 600054 milliseconds before timing out.

[rank109] :[E ProcessGroupNCCL.cpp:1537] [PG 1 Rank 5] Timeout at NCCL work: 1970765, last enqueued NCCL work: 1970765, last completed NCCL work:
1970756.

[rank109] :[E ProcessGroupNCCL.cpp:577] [Rank 5] Some NCCL operations have failed or timed out. Due to the asynchronous nature of CUDA kernels,
subsequent GPU operations might run on corrupted/incomplete data.

[rank109]:[E ProcessGroupNCCL.cpp:583] [Rank 5] To avoid data inconsistency, we are taking the entire process down.

[rank109] :[E ProcessGroupNCCL.cpp:1414] [PG 1 Rank 5] Process group watchdog thread terminated with exception: [Rank 5] Watchdog caught
collective operation timeout: WorkNCCL(SeqNum=1970765, OpType=ALLGATHER, NumelIn=18446744073709551615, NumelOut=18446744073709551615,
Timeout(ms)=600000) ran for 600054 milliseconds before timing out.

Exception raised from checkTimeout at ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:565 (most recent call first):




RMI
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JlLet’s update our software stack

e Move totorch 2.7 (it has some nice features)

e Butitrequires ROCm >= 6.2 (available on LUMI)

= |ssues with precision handling

ROCm 6.0 + torch 2.3: 16-mixed
ROCm 6.3 + torch 2.7: 32-true | bf16-mixed






!A Case studies: Storm CIARA

10m Wind Speed | 2020-02-10 00Z + Oh
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Jl Case studies: Heatwave

RMI

2m temperature
Average over 28 Belgian stations during the Aug 2020 heat wave
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b4

2m temperature
Average over 28 Belgian stations during the Aug 2020 heat wave
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b4

2m temperature
Average over 28 Belgian stations during the Aug 2020 heat wave
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b4

2m temperature

Average over 28 Belgian stations during the Aug 2020 heat wave
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b4

2m temperature
Average over 28 Belgian stations during the Aug 2020 heat wave
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b4

2m temperature

Average over 28 Belgian stations during the Aug 2020 heat wave
351 = \ — O0BS
" A e [a-1024-01-6h | 2020-08-08
le 1 I o 4 1a-1024-01-3h | 2020-08-08
304 l ; \ ! — = alaro 4km | 2020-08-08
\ !
\
525 /
o)
@ |
=
— A Y v
20 -
15+
10 1
05 07 09 11 13 15 17
2020-Aug

valid time



10m wind speed [m/s]

JHl General scores

RMI
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500hPa Geopotential Height [m]

JHl General scores
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A comparison of stretched-grid and limited-area modelling for data-driven regional weather forecasting

Jasper S. Wijnands, Michiel Van Ginderachter, Bastien Frangois, Sophie Buurman, Piet Termonia, Dieter Van den Bleeken

Regional machine learning weather prediction (MLWP) models based on graph neural networks have recently predi accuracy, i weather |
area model (LAM) and stretched-grid model (SGM) approaches have emerged for generating high-resolution regional forecasts, based on initial from a regional While L
incorporates a global domain at lower resolution. This study aims to understand how the differences in model design impact relative performance and potential applications. Specifically, the stre
generating deterministic regional forecasts over Europe. Using the Anemoi framework, models of both types are built by minimally adapting a shared architecture and trained using global and r
experiments have been conducted to explore their relative performance and highlight key differences. Results show that both LAM and SGM are competitive deterministic MLWP models with g

regional domain. Various differences were identified in the performance of the models across LAM is able to exploit high-quality boundary forcings to make predictions
data is difficult to acquire. SGM is fully self: for easier isation, can take of more training data and significantly surpasses LAM in terms of (temporal) generalisabi
to guide their choice between LAM and SGM in an data-dri system.

Subjects: Atmospheric and Oceanic Physics (physics.ao-ph): Machine Learing (cs.LG)
Citeas: arXiv:2507.18378 [physics.ao-ph]
(or arXiv:2507.18378v1 [physics.ao-ph] for this version)
hitps://dol.org/10.48550/arXiv.2507.18378 @

Submission history
From: Dieter Van Den Bleeken [view email]
[v1] Thu, 24 Jul 2025 12:54:08 UTC (16,227 KB)


https://doi.org/10.48550/arXiv.2507.18378

Some challenges
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Yl Solution: Going probabilistic

RMI

e Inject noise into processor

e Probabilistic loss function
o Continuously Ranked
Probability Score

Ensemble initial conditions Processor
1o, Lgn Output ensemble
Len

Empirical CDF based on Ensemble

1 —— observation

e Ready to start training run 0 { | s oren for 64
on LUMI with custom
Triton Kernel (25 - 40% speedup)
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' Jl Solution: Unknown

e Graph + Transformer?

e Decoder?



Y Closing Remark

RMI is punching above its Al-weight:

- International collaboration:
Anemoi

- Resources:
LUMI

58



THANK

The Royal Meteorological

Institute

Het Koninklijk

Meteorologisch Instituut

LInstitut Royal

Météorologique

Das Konigliche

Meteorologische Institut

RMI

The RMI provides reliable public service realized by
empowered staff and based on research, innovation
and continuity.

Het KMl verleent een betrouwbare dienstverlening
aan het publiek en de overheid gebaseerd op
onderzoek, innovatie en continuiteit.

L'IRM fournit un service fiable basé sur la recherche,
I'innovation et |la continuité au public et aux autorités.

Vertrauenswiirdige Dienstleistungen fur
Offentlichkeit und Behérden begriindet auf
Forschung, Innovation und Kontinuitat.




