IMPLEMENTATION AND OPTIMIZATION OF A
MULTI-GPU DISCONTINUOUS GALERKIN
SOLVER FOR MAXWELL'S EQUATIONS

Orian Louant, Matteo Cicuttin, Clément Smagghe
and Christophe Geuzaine

) IEGE

Applied and Computational
Electromagnetics Brussels, Belgium — December 17*", 2025

3" LUMI-BE User Day



GmshDG 2/34

GmshDG" is multi-GPUs nodal Discontinuous Galerkin solver based of Gmsh?:
« Currently only support Maxwell equations but will be extended in the future
» Supports both major GPUs vendors (NVIDIA and AMD)
 Still in early development

Solve large problem with tenth of billions of degrees of freedom

'https://gitlab.onelab.info/gmsh/dg
?https://gmsh.info/


https://gitlab.onelab.info/gmsh/dg
https://gmsh.info/

Discontinuous Galerkin

The Discontinuous Galerkin (DG) method is a numerical technique for solving PDEs that
combines features of the finite element and finite volume methods.

» DG represents the solution using basis functions defined on individual elements T' of
a mesh.

« |t does not enforce continuity of the solution v across element boundaries.

— u(x, y) u(x, y)

y\/x y'\/x

Continuous Discontinuous



Nodal discontinuous Galerkin 434

In the Discontinuous Galerkin formulation, the solution within each element is
represented using a nodal approximation

» Fields are approximated using nodal basis functions located at nodal points
« Within each T element, the fields are represented as

NP
E'(z,t) ~ Z E{ (t)¢;(x)

where ¢, are the basis functions and N, is the number of nodes per elements. The
coefficients E}'(t) correspond to the values of the field at the nodal points



Nodal discontinuous Galerkin

Starting from the Maxwell equations for the electric field, ignoring the source terms:

58—E=V><H
ot

and by multiplying by the test function ¢, and integrate over the elements

58—E¢idV _ / (V x H)¢,dV
T ot T

then, we integrate by parts and apply the divergence theorem, we get

OF
/Tsaqbidv = LT(n x H)¢id54— /T H-(V x¢,)dV

-

— v

Surface contribution Volume contribution

The same process can be used to get an expression for the magnetic field.



Handling the interfaces

» The surface contribution faT(n x H)¢,dS is not well defined in DG because of the
discontinuities at the interface 0T

« To solve the problem, numerical fluxes are introduced to ensure unique interface

value, stability and conservation

@)
N—l

The computation of the fluxes requires the jumps.
The jump operator is defined as

[u] = ut —u~

where u™ and u~ denote the values of the vector
field u on the face shared by elements T and T~



Computational path

Volume path
N

[ Curl +

J

Local bExchgn ge Interfaces fl Flux
jumps OUC'I‘atg”eS jumps — lifting

Surface path

The exchange of data between neighbours is only required for the multi-GPU setup. In
that case, the mesh is partitioned using the METIS graph partitioner via GMSH



Implementation choices 8/34

The current implementation uses custom, from-scratch kernels rather than established
linear algebra libraries. The code runs on both CPUs and GPUs, and the same
implementation is used for NVIDIA and AMD GPUs:

#ifdef USE_HIP

» Use of macros to translate the CUDA and #define gpuMalloc hipMalloc
HIP API calls #Helse
#endif

Kokkos has been tested to achieve portability on both CPU and GPU, but the results
were mixed: while GPU performance was comparable to native CUDA/HIP, CPU
performance was disappointing due to insufficient vectorization



Revisiting the goal 9/34

Solve large problems with tenth of billions of degrees of freedom

From the characteristics of the DG method, we expect to be able to efficiently use GPU
compute power and scale to 100+ GPUs

» Single GPU: each nodal point can compute its own contribution, well suited for
massively parallel architectures like GPUs.

« Multi-GPUs strong and weak scaling: large portions of the calculations are local but
we need to minimize the impact of the exchange of data jor the jumps if we want to
achieve good parallel performance.



Single-GPU performance




GPU vs CPU throughput 1/34

Full CPU node NVIDIA A100 AMD MI250X NVIDIA H100

Order throughput throughput throughput throughput
(GDoFs/s) (GDoFs/s) (GDoFs/s) (GDoFs/s)

1 0.82 1.21 (1.5x) 2.46 (3.0x) 1.83 (2.2x)

2 1.01 2.51 (2.5x) 4.33 (4.3x) 3.55 (3.5x)

3 115 3.75 (3.3x) 5.60 (4.9x) 515 (4.5x)

4 117 4.50 (3.8x) 512 (4.4x) 5.88 (5.0x)

3) 117 4.50 (3.8x) 4.63 (4.0x) 5.82 (5.0x)

6 117 3.73 (3.2x) 3.81 (3.2x) 5.23 (4.5x)

CPU: Lucia (2x AMD EPYC 7763) — NVIDIA A100: Lucia — NVIDIA H100: Marenostrum 5 — AMD MI250X: LUMI
Constant problem size (60M DoFs) - 5 000 time steps



Roofline plot — NVIDIA A100

Order 2 Order 5
All kernels memory bound Main kernels compute bound
- 10° 3 | | | | | 104 g | | | | |
E : i o
)
)
O
Q | |
g 102 3 10* 3
é [ [
E, | |
10’ ' ' ' ' 10" - ' ' ' '
102 107" 10° 10’ 102 10 107" 10° 10’ 102
Al (FLOPS/Byte) Al (FLOPS/Byte)

C__JCurlC_JLiftingC_—_JTime Int. C_JFluxes C—J Jumps




Roofline plot — AMD MI250X 13/ 34

= 10° a | | | | ¢ On the MI250X, the measured

E | arithmetic intensities are comparable
O 10% ¢ to those observed on A100 GPUs

I-(I5 across all kernels

E‘,j 10° « However, despite this similarity, the
= 3 achieved performance differs by

= 102 kernel type:

(@) ;

"q:) 1  memory-bound kernels exhibit

o 10" ' similar performance levels

10* 10" 10° 10" 10° - compute-bound kernels show
Al (FLOPS/Byte) noticeably lower performance

O JCurlC_JLiftingC_—JTime Int. C_JFluxes C—J Jumps




Roofline plot — NVIDIA H100 14/34

10° 2 « The NVIDIA H100 GPUs on

| MareNostrum 5 feature four stacks of
HBM2e memory, providing up to 1.6
TB/s of memory bandwidth and 27
TFLOPs/s of peak compute
performance

104 |

10° |

» These theoretical performance figures
are comparable to those of a single
10 ' MI250X GCD

102 107" 10° 10" 102 « Nevertheless, the measured

Al (FLOPS/Byte) performance of the flux and curl
kernels on the H100 is approximately
3.5% higher

10% |

Performance (GFLOPS/s)

C__JCurlC_JLiftingC_—_JTime Int. C_JFluxes C—J Jumps




Does the performance difference make sense?

To explain the performance differences between NVIDIA and AMD hardware, we need
to consider the following:

« The curl and lifting kernels are the main performance bottlenecks, accounting for
approximately 60% of the total execution time

» The curl kernel computes spatial derivatives by applying differentiation matrices
to the degrees of freedom within each element

» The lifting kernel applies precomputed lifting operators to the fluxes to
incorporate interface contributions into the element volume

In practice, both kernels largely reduce to dense matrix—vector or matrix—matrix
multiplications with small, fixed-size matrices: data reuse is the key to get good
performance



Sorry, | lied... We are not compute bound

By investigating further, we can conclude that our performance bottleneck is the L1
cache. For example, for the curl kernel:

* NVIDIA GPUs benefit from significantly larger L1 caches, higher L1 bandwidth, and
higher hit rates

e In contrast, the MI250X, with much smaller L1 size, exhibits lower arithmetic
intensity, and a reduced L1 hit rate. This indicates less data reuse and results in
substantially lower achieved throughput

L1Size L1BW L1 Al L1 hit rate Throughput

(kiB) (TB/s)  (FLOPS/Bytes) (%) (TFLOPS/s)

A100 192 15.1 0.37 95 6.126
H100 256 27.0 0.37 96 8.661
MI250X 16 11.9 0.24 81 2.354




We should be able to improve performance on LUMI

While we have not yet achieved performance on the MI250X that is close to the GPU
theoretical capabilities, we plan to rework the flux and curl kernels in the near future.

Based on the numbers presented on the previous slide, we expect to achieve
significantly better performance on LUMI by leveraging the Local Data Share (LDS). For
example, for the curl kernel on a single GCD, the achievable performance can be
estimated as

0.37 FLOPS/Byte - 23.9 TB/s = 8.8 TFLOPS

which is comparable to the performance observed on the NVIDIA H100



GPU vs CPU power consumption and CO, emissions

In addition to the compute performance, it's also important to consider the simulation
power use as it impact the economic costs (electricity cost to run the computation and
cool the data center) as well as the environmental footprint

Energy Average CO.eq

per timestep Power per hour®

(J) (W) (9)

2x AMD EPYC 7763 25147 526 58
X NVIDIA A100 4.026 302 33

X NVIDIA H100 4.540 442 48

X AMD MI250X 6.620 409 45

60M DoFs - order 5 - 5 000 time steps

*hitps://www.nowtricity.com : the average for the Belgian energy mix in 2024 was 110 gCO.,eq/kWh


https://www.nowtricity.com

Multi-GPU performance




Communication algorithm overview

The only part of the code that requires data exchange between GPUs is the
computation of numerical fluxes, and in particular the evaluation of the jumps across
element interfaces

The multi-GPU implementation leverages MPI to handle the exchange of boundary data
between neighboring subdomains:

exchange_boundary_data():

1 for neighbor in NeighborsList:

indexes +— neighborIndexes[neighbor]

packedDataSend «+— pack_boundary_data(fields, indexes)

Send(packedDataSend, neighbor)
Recv(packedDataRecv, neighbor)

ONO G b WN

compute_jumps(fields, indexes)




Initial implementation strong scaling

Order 5 - 850M DoFs*

80 | | 100 | . N
» 3 « Simple “naive” implementation using
ug 64 | 180 I MPI blocking Send and Recv
Q O . - .
@ 48! 50 .5 The parallel efficiency quickly drops
= ;:_) below 80% (16 GPUs)
%‘) 32 ¢ 140 © « Throughput doesn't improve when
- = using 64 GPUs
S 16 | 120 §
= ——throughput &

—— efficiency

' — 0 £3 Switch to MPI non-blocking
4 8 16 32 64

Number of GPUs

4Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps
Infiniband NICs



Introducing non-blocking communication

Order 5 - 850M DoFs”

180 | . | | | 1100 o

Q) 1 Q) » Massive improvement compared to the
% 144 180 T blocking implementation
8 108 I 50 % » 80% parallel efficiency up to 32 GPUs
?5’ [ tILE) « Throughput keeps improving when
S 72 140 © using 64 GPUs
> C
o (O
T 36 120 %
= 4 ter]l]E%IJegr?Cp;t @ X Still, this is not enough to use more

o) — 0 than 100+ GPUs efficiently

32 64
Number of GPUs

SLucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps
Infiniband NICs



Scalability limitations 23/34

The limit to the scalability has two main reasons:

» As we increase the number of GPUs, the number of DoFs assighed to each GPU
decreases, leaving fewer computations per device. This underutilization prevents
the hardware from being fully saturated, with the impact being most pronounced in
the compute-intensive Curl and Lifting kernels

« As the number of GPUs increases, the communication-to-computation ratio also
rises

While the first limitation can be overcome with a larger problem size, we need to
address the second limitation



A computational path for hiding communication

» If we want to be able to scale to a large number of GPUs, we need to hide the

communication
« As the volume and surface path are independent, we can overlap the communication

with the execution of the Curl kernel

Default GPU stream

( Curl ] +

Local fin
‘ el \ [ Flux ]—[ lifting
r ) (

Exchange Interfaces
boundaries jumps

data
- J -

Second GPU stream




Strategy for hiding communication

To hide communication, the implementation relies on two GPU streams that execute
independently:

« A computation stream, where the majority of the computational kernels are launched

« A communication stream (high priority), where the packing and unpacking kernels
(interface jumps) are executed

The kernels are submitted in a single batch to minimize kernel launch overhead:

» Coordination between the two streams is handled using CUDA/HIP events

» Events are also used to synchronize GPU and CPU work, for example by triggering
MPI send operations once a packing kernel has completed



Execution profile with hidden communication

H update il E update i
GPU execution maxwell... void maxwell::gpu_lift_p... .. .. ..
«——— Communication phase
Host MPI B
Host CUDA Wl-nll__ll l [ cudaDevicesynchronize

» The profiling confirms that the communication is overlapped with the execution of
the Curl kernel

« If the problem size is large enough, the execution time of the Curl kernel is sufficient
to completely mask the communication



Hiding communication - Lucia strong scaling

Order 5 - 850M DoFs°®

5 290 1100 <« Hiding communication improves

« : = scaling and the improvement is more

5 200 | 180 » -aing and e P

a . 2 visible as we increase the number of

O [

= 150 | 160 3 GPUs

2 E 5

5, 100 - 40 = Usi :

S o » Using 64 GPUs, overlapping the

o 50 20 o communication with the Curl kernel

= ——throughput X . ‘ 2t 236

_._ef-f'ClenCy execution allows to go from 172 to

0 GDoFs/s

64
Number of GPUs

®Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps
Infiniband NICs



Beyond Tier-1: Leonardo strong scaling

Order 5 - 2.3B DoFs’

)
©
o
S

720 ¢

540 |

180 ——throughput
O —o—efﬂmency
16 32 64 128 256

Number of GPUs

Throughput (GDoFs/s

1100
1 80
160

140

20

Parallel efficiency (%)

* On Lucia, the maximum job size is 64
GPUs. To validate our scaling results,
we heed to extend beyond this limit

* On Leonardo, we observe good
parallel efficiency up to 128 GPUs, but
it drops beyond that

=~ The GPUs on Leonardo have a higher
maximum power limit (450 W vs. 400 W
on Lucia), which slightly improves single-
GPU performance: 4.85 GDoFs/s
compared to 4.61GDoFs/s for Lucia

’Leonardo - 4x NVIDIA A100 64GB GPUs - 1x Intel Xeon Platinum 8358 32-core CPU - 512 GB of RAM, 4x 100

Gbps Infiniband NICs



Beyond Tier-1: Leonardo strong scaling (RK4)

Order 5 - 2.3B DoFs

- 400

@

'5 320 ¢

S

— 240 |

>

<

S 160

S

E 80 | ——throughput

0 —-—ef'f|C|ency

512

Number of GPUs

1100

180

1 60

140

20

Parallel efficiency (%)

» In previous scaling experiments, we
used Leapfrog for time integration,
which updates E and H in separate
steps, leaving limited opportunity to
hide communication

» By switching to fourth-order Runge-
Kutta, we gain more opportunities to
hide communication, which improves
strong scaling performance up to 256
GPUs

As long as the execution time of the
Curl kernel is sufficient to hide
communication, we can expect strong
scaling to remain good



LUMI strong scaling 30/34

Order 5 - 2.3B DoFs®

1400 1100  Efficiency > 90% up to 256 GCDs
o R
ug 120 1 80 <« After 256 GCDs the amount of
Q | 2 computation is not sufficient to hide
O 840 160 o o
= ; o communication and the parallel
: | u: . .
2 560! l40 @ efficiency starts to drop
(@) ] O
- | =
© 280 20 S < LUMI scales better than Leonardo
< —e— throughput Q : :

) —— eff|C|enCy _ which can be explained by the

difference in interconnect bandwidth

1024
(4% 200 Gbits/s vs 2x 200 Gbits/s)

Number of GCDs

8LUMI - 4x AMD MI250X 64GB GPUs - 1x AMD EPYC 7A53 64-core CPU - 512 GB of RAM, 4x 200 Gbps
Slingshot NICs



LUMI strong scaling (RK4)

Order 5 - 2.3B DoFs « Using RK4, the parallel efficiency

= >00 ¥ 1 100 — exceeds 90% up to 256 GCDs

5 DN

L 400 | 180 I

Q 2  « Beyond 256 GCDs, the efficiency

= 300 | 160 :g begins to decrease but remains above,

2 = or close to, 70%

% 200 | 140 2 ’

> =

o o .

= 100 ¢ throughput 20 © For runs on 128 compute npc?les, both
. —— ef—f|C|enCy throughput and parallel efficiency are

higher on LUMI (454 GDoFs/s, 69%)

1024
than on Leonardo (374 GDoFs/s, 60%)

Number of GCDs



Weak scaling

NVIDIA A100 - Lucia AMD MI250X - LUMI
256 |« | | 1100 __ 256 [ — | | 1100 _
L X 2 NS
w 128 ¢ 198 & & 128 ¢ 198 &
[S) > 5 >
o 64 196 2 A 64 196 2
& o O Q
— 32 194 © T 32 194 ©
- T+ - N
2 16 192 © 2 16 192 o
o) [ o) [
5 8 | 190 T 5 8 | 190 T
C 4 t —e—throughput {1 88 S £ 4t —e—throughput | 88 D
- —— efficiency - F —— efficiency .
1 4 16 64 2 8 32 128

Number of GPUs Number of GCDs



Perspectives 33/34

While we have achieved our goal of efficiently scaling to hundreds of GPUs, there is still
room for further improvement in our implementation:

« On LUMI, we plan to experiment with stream- and GPU-triggered communication
implemented in Cray MPICH. Initial tests were conducted but had to be halted
because some features described in the documentation are not yet implemented in
the libraries currently installed on LUMI

» We also plan to evaluate NVSHMEM/rocSHMEM to allow kernels to directly
incorporate both communication and computation, which could reduce the need for
synchronization with the CPU



M5

www.enNmieuX.oe

Thank you for your attention

* X %
* *
r *

*

*
* 5 %

Cofinancé par
I’'Union européenne

Contact: orian.louant@uliege.be

LUMI

We acknowledge LUMI-BE for awarding this
project access to the LUMI supercomputer
through a Development Access call

LUMI-BE is joint effort from BELSPO, SPW
Economie, Emploi, Recherche, Department
of Economy, Science & Innovation and
Innoviris

Eﬁron’C

The present research benefited from
computational resources made available
on Lucia, the Tier-1 supercomputer of
the Walloon Region, infrastructure funded
by the Walloon Region under the grant
agreement n°1910247

We acknowledge EuroHPC Joint
Undertaking for awarding us access
to Leonardo at CINECA, Italy and
Marenostrum5 at BSC, Spain under
grant EHPC-DEV-2025D10-013

34/34



mailto:orian.louant@uliege.be

	 Single-GPU performance 
	 Multi-GPU performance 

