
IMPLEMENTATION AND OPTIMIZATION OF A
MULTI-GPU DISCONTINUOUS GALERKIN

SOLVER FOR MAXWELL’S EQUATIONS

Orian Louant, Matteo Cicuttin, Clément Smagghe
and Christophe Geuzaine

Applied and Computational
Electromagnetics

3rd LUMI-BE User Day

Brussels, Belgium — December 17th, 2025

GmshDG 2 / 34

GmshDG1 is multi-GPUs nodal Discontinuous Galerkin solver based of Gmsh2:

• Currently only support Maxwell equations but will be extended in the future

• Supports both major GPUs vendors (NVIDIA and AMD)

• Still in early development

Goal

Solve large problem with tenth of billions of degrees of freedom

1https://gitlab.onelab.info/gmsh/dg
2https://gmsh.info/

https://gitlab.onelab.info/gmsh/dg
https://gmsh.info/

Discontinuous Galerkin 3 / 34

The Discontinuous Galerkin (DG) method is a numerical technique for solving PDEs that
combines features of the finite element and finite volume methods.

• DG represents the solution using basis functions defined on individual elements 𝑇 of
a mesh.

• It does not enforce continuity of the solution 𝑢 across element boundaries.

u(x, y)

T

xy

u(x, y)

T

xy

Continuous Discontinuous

Nodal discontinuous Galerkin 4 / 34

In the Discontinuous Galerkin formulation, the solution within each element is
represented using a nodal approximation

• Fields are approximated using nodal basis functions located at nodal points

• Within each 𝑇 element, the fields are represented as

𝑬𝑇 (𝒙, 𝑡) ≈ ∑
𝑁𝑝

𝑖=0
𝑬𝑇

𝑖 (𝑡)𝜙𝑖(𝒙)

where 𝜙𝑖 are the basis functions and 𝑁𝑝 is the number of nodes per elements. The
coefficients 𝐸𝑇

𝑖 (𝑡) correspond to the values of the field at the nodal points

Nodal discontinuous Galerkin 5 / 34

Starting from the Maxwell equations for the electric field, ignoring the source terms:

𝜀𝜕𝑬
𝜕𝑡

= ∇ × 𝑯

and by multiplying by the test function 𝜙𝑖 and integrate over the elements

∫
𝑇

𝜀𝜕𝑬
𝜕𝑡

𝜙𝑖𝑑𝑉 = ∫
𝑇
(∇ × 𝑯)𝜙𝑖𝑑𝑉

then, we integrate by parts and apply the divergence theorem, we get

∫
𝑇

𝜀𝜕𝑬
𝜕𝑡

𝜙𝑖𝑑𝑉 =
⏟
∫

𝜕𝑇
(𝒏 × 𝑯)𝜙𝑖𝑑𝑆

Surface contribution

−
⏟
∫

𝑇
𝑯 ⋅ (∇ × 𝜙𝑖)𝑑𝑉

Volume contribution

The same process can be used to get an expression for the magnetic field.

Handling the interfaces 6 / 34

• The surface contribution ∫
𝜕𝑇

(𝒏 × 𝑯)𝜙𝑖𝑑𝑆 is not well defined in DG because of the

discontinuities at the interface 𝜕𝑇

• To solve the problem, numerical fluxes are introduced to ensure unique interface
value, stability and conservation

T₁

T₂
The computation of the fluxes requires the jumps.
The jump operator is defined as

⟦𝒖⟧ = 𝒖+ − 𝒖−

where 𝒖+ and 𝒖− denote the values of the vector
field 𝒖 on the face shared by elements 𝑇 + and 𝑇 −

Computational path 7 / 34

Exchange
boundaries

data
Local
jumps

Curl

Interfaces
jumps Flux Flux

lifting

+

Surface path

Volume path

The exchange of data between neighbours is only required for the multi-GPU setup. In
that case, the mesh is partitioned using the METIS graph partitioner via GMSH

Implementation choices 8 / 34

The current implementation uses custom, from-scratch kernels rather than established
linear algebra libraries. The code runs on both CPUs and GPUs, and the same
implementation is used for NVIDIA and AMD GPUs:

• Use of macros to translate the CUDA and
HIP API calls

• GPU Kernels are the same

#ifdef USE_HIP

 #define gpuMalloc hipMalloc

#else

 #define gpuMalloc cudaMalloc

#endif

Kokkos has been tested to achieve portability on both CPU and GPU, but the results
were mixed: while GPU performance was comparable to native CUDA/HIP, CPU
performance was disappointing due to insufficient vectorization

Revisiting the goal 9 / 34

Goal

Solve large problems with tenth of billions of degrees of freedom

From the characteristics of the DG method, we expect to be able to efficiently use GPU
compute power and scale to 100+ GPUs

• Single GPU: each nodal point can compute its own contribution, well suited for
massively parallel architectures like GPUs.

• Multi-GPUs strong and weak scaling: large portions of the calculations are local but
we need to minimize the impact of the exchange of data jor the jumps if we want to
achieve good parallel performance.

Single-GPU performance

GPU vs CPU throughput 11 / 34

Order
Full CPU node

throughput
(GDoFs/s)

NVIDIA A100
throughput

(GDoFs/s)

AMD MI250X
throughput

(GDoFs/s)

NVIDIA H100
throughput

(GDoFs/s)

1 0.82 1.21 (1.5x) 2.46 (3.0x) 1.83 (2.2x)

2 1.01 2.51 (2.5x) 4.33 (4.3x) 3.55 (3.5x)

3 1.15 3.75 (3.3x) 5.60 (4.9x) 5.15 (4.5x)

4 1.17 4.50 (3.8x) 5.12 (4.4x) 5.88 (5.0x)

5 1.17 4.50 (3.8x) 4.63 (4.0x) 5.82 (5.0x)

6 1.17 3.73 (3.2x) 3.81 (3.2x) 5.23 (4.5x)

CPU: Lucia (2x AMD EPYC 7763) — NVIDIA A100: Lucia — NVIDIA H100: Marenostrum 5 — AMD MI250X: LUMI
Constant problem size (60M DoFs) - 5 000 time steps

Roofline plot — NVIDIA A100 12 / 34

Curl Lifting Time Int. Fluxes Jumps

10-2 10-1 100 101 102

AI (FLOPS/Byte)

101

102

103

104

P
e

rf
o

rm
a
n

c
e

 (
G

F
LO

P
S

/s
)

Order 2
All kernels memory bound

10-2 10-1 100 101 102

AI (FLOPS/Byte)

101

102

103

104

Order 5
Main kernels compute bound

Roofline plot — AMD MI250X 13 / 34

Curl Lifting Time Int. Fluxes Jumps

10-2 10-1 100 101 102

AI (FLOPS/Byte)

101

102

103

104

105

P
e

rf
o

rm
a
n

c
e

 (
G

F
LO

P
S

/s
) • On the MI250X, the measured

arithmetic intensities are comparable
to those observed on A100 GPUs
across all kernels

• However, despite this similarity, the
achieved performance differs by
kernel type:

• memory-bound kernels exhibit
similar performance levels

• compute-bound kernels show
noticeably lower performance

Roofline plot — NVIDIA H100 14 / 34

Curl Lifting Time Int. Fluxes Jumps

10-2 10-1 100 101 102

AI (FLOPS/Byte)

101

102

103

104

105
P

e
rf

o
rm

a
n

c
e

 (
G

F
LO

P
S

/s
) • The NVIDIA H100 GPUs on

MareNostrum 5 feature four stacks of
HBM2e memory, providing up to 1.6
TB/s of memory bandwidth and 27
TFLOPs/s of peak compute
performance

• These theoretical performance figures
are comparable to those of a single
MI250X GCD

• Nevertheless, the measured
performance of the flux and curl
kernels on the H100 is approximately
3.5× higher

Does the performance difference make sense? 15 / 34

To explain the performance differences between NVIDIA and AMD hardware, we need
to consider the following:

• The curl and lifting kernels are the main performance bottlenecks, accounting for
approximately 60% of the total execution time

• The curl kernel computes spatial derivatives by applying differentiation matrices
to the degrees of freedom within each element

• The lifting kernel applies precomputed lifting operators to the fluxes to
incorporate interface contributions into the element volume

In practice, both kernels largely reduce to dense matrix–vector or matrix–matrix
multiplications with small, fixed-size matrices: data reuse is the key to get good
performance

Sorry, I lied… We are not compute bound 16 / 34

By investigating further, we can conclude that our performance bottleneck is the L1
cache. For example, for the curl kernel:

• NVIDIA GPUs benefit from significantly larger L1 caches, higher L1 bandwidth, and
higher hit rates

• In contrast, the MI250X, with much smaller L1 size, exhibits lower arithmetic
intensity, and a reduced L1 hit rate. This indicates less data reuse and results in
substantially lower achieved throughput

L1 Size
(kiB)

L1 BW
(TB/s)

L1 AI
(FLOPS/Bytes)

L1 hit rate
(%)

Throughput
(TFLOPS/s)

A100 192 15.1 0.37 95 6.126

H100 256 27.0 0.37 96 8.661

MI250X 16 11.9 0.24 81 2.354

We should be able to improve performance on LUMI 17 / 34

While we have not yet achieved performance on the MI250X that is close to the GPU
theoretical capabilities, we plan to rework the flux and curl kernels in the near future.

Based on the numbers presented on the previous slide, we expect to achieve
significantly better performance on LUMI by leveraging the Local Data Share (LDS). For
example, for the curl kernel on a single GCD, the achievable performance can be
estimated as

𝟢.𝟥𝟩 𝖥𝖫𝖮𝖯𝖲/𝖡𝗒𝗍𝖾 ⋅ 𝟤𝟥.𝟫 𝖳𝖡/𝗌 = 𝟪.𝟪 𝖳𝖥𝖫𝖮𝖯𝖲

which is comparable to the performance observed on the NVIDIA H100

GPU vs CPU power consumption and CO2 emissions 18 / 34

In addition to the compute performance, it’s also important to consider the simulation
power use as it impact the economic costs (electricity cost to run the computation and
cool the data center) as well as the environmental footprint

Energy
per timestep

(J)

Average
Power

(W)

CO2eq
per hour3

(g)

2x AMD EPYC 7763 25.147 526 58

1x NVIDIA A100 4.026 302 33

1x NVIDIA H100 4.540 442 48

1x AMD MI250X 6.620 409 45

60M DoFs - order 5 - 5 000 time steps

3https://www.nowtricity.com : the average for the Belgian energy mix in 2024 was 110 gCO2eq/kWh

https://www.nowtricity.com

Multi-GPU performance

Communication algorithm overview 20 / 34

The only part of the code that requires data exchange between GPUs is the
computation of numerical fluxes, and in particular the evaluation of the jumps across
element interfaces

The multi-GPU implementation leverages MPI to handle the exchange of boundary data
between neighboring subdomains:

exchange_boundary_data():
1 for neighbor in NeighborsList:
2 indexes ← neighborIndexes[neighbor]
3 packedDataSend ← pack_boundary_data(fields, indexes)
4
5 Send(packedDataSend, neighbor)
6 Recv(packedDataRecv, neighbor)
7
8 compute_jumps(fields, indexes)

Initial implementation strong scaling 21 / 34

throughput
efficiency

0

20

40

60

80

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

4 8 16 32 64

Number of GPUs

0

16

32

48

64

80

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

Order 5 - 850M DoFs4

• Simple “naive” implementation using
MPI blocking Send and Recv

• The parallel efficiency quickly drops
below 80% (16 GPUs)

• Throughput doesn’t improve when
using 64 GPUs

➡️ Switch to MPI non-blocking

4Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps
Infiniband NICs

Introducing non-blocking communication 22 / 34

throughput
efficiency

0

20

40

60

80

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

4 8 16 32 64

Number of GPUs

0

36

72

108

144

180

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

Order 5 - 850M DoFs5

• Massive improvement compared to the
blocking implementation

• 80% parallel efficiency up to 32 GPUs

• Throughput keeps improving when
using 64 GPUs

❌️ Still, this is not enough to use more
than 100+ GPUs efficiently

5Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps
Infiniband NICs

Scalability limitations 23 / 34

The limit to the scalability has two main reasons:

• As we increase the number of GPUs, the number of DoFs assigned to each GPU
decreases, leaving fewer computations per device. This underutilization prevents
the hardware from being fully saturated, with the impact being most pronounced in
the compute-intensive Curl and Lifting kernels

• As the number of GPUs increases, the communication-to-computation ratio also
rises

➡️ While the first limitation can be overcome with a larger problem size, we need to
address the second limitation

A computational path for hiding communication 24 / 34

• If we want to be able to scale to a large number of GPUs, we need to hide the
communication

• As the volume and surface path are independent, we can overlap the communication
with the execution of the Curl kernel

Exchange
boundaries

data

Local
jumps

Curl

Interfaces
jumps

Flux Flux
lifting

+

Second GPU stream

Default GPU stream

Strategy for hiding communication 25 / 34

To hide communication, the implementation relies on two GPU streams that execute
independently:

• A computation stream, where the majority of the computational kernels are launched

• A communication stream (high priority), where the packing and unpacking kernels
(interface jumps) are executed

The kernels are submitted in a single batch to minimize kernel launch overhead:

• Coordination between the two streams is handled using CUDA/HIP events

• Events are also used to synchronize GPU and CPU work, for example by triggering
MPI send operations once a packing kernel has completed

Execution profile with hidden communication 26 / 34

Host CUDA
Host MPI

GPU execution

Communication phase

H update E update

• The profiling confirms that the communication is overlapped with the execution of
the Curl kernel

• If the problem size is large enough, the execution time of the Curl kernel is sufficient
to completely mask the communication

Hiding communication - Lucia strong scaling 27 / 34

throughput
efficiency

20

40

60

80

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

4 8 16 32 64

Number of GPUs

0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

Order 5 - 850M DoFs6

• Hiding communication improves
scaling and the improvement is more
visible as we increase the number of
GPUs

• Using 64 GPUs, overlapping the
communication with the Curl kernel
execution allows to go from 172 to 236
GDoFs/s

6Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps
Infiniband NICs

Beyond Tier-1: Leonardo strong scaling 28 / 34

throughput
efficiency

20

40

60

80

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

8 16 32 64 128 256

Number of GPUs

0

180

360

540

720

900

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

Order 5 - 2.3B DoFs7 • On Lucia, the maximum job size is 64
GPUs. To validate our scaling results,
we need to extend beyond this limit

• On Leonardo, we observe good
parallel efficiency up to 128 GPUs, but
it drops beyond that

🗒️ The GPUs on Leonardo have a higher
maximum power limit (450 W vs. 400 W
on Lucia), which slightly improves single-
GPU performance: 4.85 GDoFs/s
compared to 4.61 GDoFs/s for Lucia

7Leonardo - 4x NVIDIA A100 64GB GPUs - 1x Intel Xeon Platinum 8358 32-core CPU - 512 GB of RAM, 4x 100
Gbps Infiniband NICs

Beyond Tier-1: Leonardo strong scaling (RK4) 29 / 34

throughput
efficiency

20

40

60

80

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

8 32 128 512

Number of GPUs

0

80

160

240

320

400

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

Order 5 - 2.3B DoFs

• In previous scaling experiments, we
used Leapfrog for time integration,
which updates 𝑬 and 𝑯 in separate
steps, leaving limited opportunity to
hide communication

• By switching to fourth-order Runge-
Kutta, we gain more opportunities to
hide communication, which improves
strong scaling performance up to 256
GPUs

➡️ As long as the execution time of the
Curl kernel is sufficient to hide
communication, we can expect strong
scaling to remain good

LUMI strong scaling 30 / 34

throughput
efficiency

20

40

60

80

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

16 64 256 1024

Number of GCDs

0

280

560

840

1120

1400

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

Order 5 - 2.3B DoFs8
• Efficiency > 90% up to 256 GCDs

• After 256 GCDs the amount of
computation is not sufficient to hide
communication and the parallel
efficiency starts to drop

• LUMI scales better than Leonardo
which can be explained by the
difference in interconnect bandwidth
(4x 200 Gbits/s vs 2x 200 Gbits/s)

8LUMI - 4x AMD MI250X 64GB GPUs - 1x AMD EPYC 7A53 64-core CPU - 512 GB of RAM, 4x 200 Gbps
Slingshot NICs

LUMI strong scaling (RK4) 31 / 34

throughput
efficiency

20

40

60

80

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

16 64 256 1024

Number of GCDs

0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

Order 5 - 2.3B DoFs
• Using RK4, the parallel efficiency

exceeds 90% up to 256 GCDs

• Beyond 256 GCDs, the efficiency
begins to decrease but remains above,
or close to, 70%

• For runs on 128 compute nodes, both
throughput and parallel efficiency are
higher on LUMI (454 GDoFs/s, 69%)
than on Leonardo (374 GDoFs/s, 60%)

Weak scaling 32 / 34

throughput
efficiency

88

90

92

94

96

98

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

1 4 16 64

Number of GPUs

4

8

16

32

64

128

256

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

NVIDIA A100 - Lucia

throughput
efficiency

88

90

92

94

96

98

100

P
a
ra

lle
l e

ff
ic

ie
n

cy
 (

%
)

2 8 32 128

Number of GCDs

4

8

16

32

64

128

256

T
h

ro
u

g
h

p
u

t
(G

D
o

F
s/

s)

AMD MI250X - LUMI

Perspectives 33 / 34

While we have achieved our goal of efficiently scaling to hundreds of GPUs, there is still
room for further improvement in our implementation:

• On LUMI, we plan to experiment with stream- and GPU-triggered communication
implemented in Cray MPICH. Initial tests were conducted but had to be halted
because some features described in the documentation are not yet implemented in
the libraries currently installed on LUMI

• We also plan to evaluate NVSHMEM/rocSHMEM to allow kernels to directly
incorporate both communication and computation, which could reduce the need for
synchronization with the CPU

34 / 34

Thank you for your attention

Contact: orian.louant@uliege.be

mailto:orian.louant@uliege.be

	 Single-GPU performance
	 Multi-GPU performance

