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GmshDG1 is multi-GPUs nodal Discontinuous Galerkin solver based of Gmsh2:

• Currently only support Maxwell equations but will be extended in the future

• Supports both major GPUs vendors (NVIDIA and AMD)

• Still in early development

Goal

Solve large problem with tenth of billions of degrees of freedom

1https://gitlab.onelab.info/gmsh/dg
2https://gmsh.info/

https://gitlab.onelab.info/gmsh/dg
https://gmsh.info/
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The Discontinuous Galerkin (DG) method is a numerical technique for solving PDEs that 
combines features of the finite element and finite volume methods.

• DG represents the solution using basis functions defined on individual elements 𝑇  of 
a mesh.

• It does not enforce continuity of the solution 𝑢 across element boundaries.
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In the Discontinuous Galerkin formulation, the solution within each element is 
represented using a nodal approximation

• Fields are approximated using nodal basis functions located at nodal points

• Within each 𝑇  element, the fields are represented as

𝑬𝑇 (𝒙, 𝑡) ≈ ∑
𝑁𝑝

𝑖=0
𝑬𝑇

𝑖 (𝑡)𝜙𝑖(𝒙)

where 𝜙𝑖 are the basis functions and 𝑁𝑝 is the number of nodes per elements. The 
coefficients 𝐸𝑇

𝑖 (𝑡) correspond to the values of the field at the nodal points
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Starting from the Maxwell equations for the electric field, ignoring the source terms:

𝜀𝜕𝑬
𝜕𝑡

= ∇ × 𝑯

and by multiplying by the test function 𝜙𝑖 and integrate over the elements

∫
𝑇

𝜀𝜕𝑬
𝜕𝑡

𝜙𝑖𝑑𝑉 = ∫
𝑇
(∇ × 𝑯)𝜙𝑖𝑑𝑉

then, we integrate by parts and apply the divergence theorem, we get

∫
𝑇

𝜀𝜕𝑬
𝜕𝑡

𝜙𝑖𝑑𝑉 =
⏟
∫

𝜕𝑇
(𝒏 × 𝑯)𝜙𝑖𝑑𝑆

Surface contribution

−
⏟
∫

𝑇
𝑯 ⋅ (∇ × 𝜙𝑖)𝑑𝑉

Volume contribution

The same process can be used to get an expression for the magnetic field.
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• The surface contribution ∫
𝜕𝑇

(𝒏 × 𝑯)𝜙𝑖𝑑𝑆 is not well defined in DG because of the 

discontinuities at the interface 𝜕𝑇

• To solve the problem, numerical fluxes are introduced to ensure unique interface 
value, stability and conservation

T₁

T₂
The computation of the fluxes requires the jumps. 
The jump operator is defined as

⟦𝒖⟧ = 𝒖+ − 𝒖−

where 𝒖+ and 𝒖− denote the values of the vector 
field 𝒖 on the face shared by elements 𝑇 + and 𝑇 −
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Exchange
boundaries

data
Local
jumps

Curl

Interfaces
jumps Flux Flux

lifting

+

Surface path

Volume path

The exchange of data between neighbours is only required for the multi-GPU setup. In 
that case, the mesh is partitioned using the METIS graph partitioner via GMSH
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The current implementation uses custom, from-scratch kernels rather than established 
linear algebra libraries. The code runs on both CPUs and GPUs, and the same 
implementation is used for NVIDIA and AMD GPUs:

• Use of macros to translate the CUDA and 
HIP API calls

• GPU Kernels are the same

#ifdef USE_HIP

  #define gpuMalloc hipMalloc

#else

  #define gpuMalloc cudaMalloc

#endif

Kokkos has been tested to achieve portability on both CPU and GPU, but the results 
were mixed: while GPU performance was comparable to native CUDA/HIP, CPU 
performance was disappointing due to insufficient vectorization
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Goal

Solve large problems with tenth of billions of degrees of freedom

From the characteristics of the DG method, we expect to be able to efficiently use GPU 
compute power and scale to 100+ GPUs

• Single GPU: each nodal point can compute its own contribution, well suited for 
massively parallel architectures like GPUs.

• Multi-GPUs strong and weak scaling: large portions of the calculations are local but 
we need to minimize the impact of the exchange of data jor the jumps if we want to 
achieve good parallel performance.



Single-GPU performance
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Order
Full CPU node

throughput
(GDoFs/s)

NVIDIA A100
throughput

(GDoFs/s)

AMD MI250X
throughput

(GDoFs/s)

NVIDIA H100
throughput

(GDoFs/s)

1 0.82 1.21 (1.5x) 2.46 (3.0x) 1.83 (2.2x)

2 1.01 2.51 (2.5x) 4.33 (4.3x) 3.55 (3.5x)

3 1.15 3.75 (3.3x) 5.60 (4.9x) 5.15 (4.5x)

4 1.17 4.50 (3.8x) 5.12 (4.4x) 5.88 (5.0x)

5 1.17 4.50 (3.8x) 4.63 (4.0x) 5.82 (5.0x)

6 1.17 3.73 (3.2x) 3.81 (3.2x) 5.23 (4.5x)

CPU: Lucia (2x AMD EPYC 7763) — NVIDIA A100: Lucia — NVIDIA H100: Marenostrum 5 — AMD MI250X: LUMI
Constant problem size (60M DoFs) - 5 000 time steps
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arithmetic intensities are comparable 
to those observed on A100 GPUs 
across all kernels

• However, despite this similarity, the 
achieved performance differs by 
kernel type:

• memory-bound kernels exhibit 
similar performance levels

• compute-bound kernels show 
noticeably lower performance
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MareNostrum 5 feature four stacks of 
HBM2e memory, providing up to 1.6 
TB/s of memory bandwidth and 27 
TFLOPs/s of peak compute 
performance

• These theoretical performance figures 
are comparable to those of a single 
MI250X GCD

• Nevertheless, the measured 
performance of the flux and curl 
kernels on the H100 is approximately 
3.5× higher
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To explain the performance differences between NVIDIA and AMD hardware, we need 
to consider the following:

• The curl and lifting kernels are the main performance bottlenecks, accounting for 
approximately 60% of the total execution time

• The curl kernel computes spatial derivatives by applying differentiation matrices 
to the degrees of freedom within each element

• The lifting kernel applies precomputed lifting operators to the fluxes to 
incorporate interface contributions into the element volume

In practice, both kernels largely reduce to dense matrix–vector or matrix–matrix 
multiplications with small, fixed-size matrices: data reuse is the key to get good 
performance
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By investigating further, we can conclude that our performance bottleneck is the L1 
cache. For example, for the curl kernel:

• NVIDIA GPUs benefit from significantly larger L1 caches, higher L1 bandwidth, and 
higher hit rates

• In contrast, the MI250X, with much smaller L1 size, exhibits lower arithmetic 
intensity, and a reduced L1 hit rate. This indicates less data reuse and results in 
substantially lower achieved throughput

L1 Size
(kiB)

L1 BW
(TB/s)

L1 AI
(FLOPS/Bytes)

L1 hit rate
(%)

Throughput
(TFLOPS/s)

A100 192 15.1 0.37 95 6.126

H100 256 27.0 0.37 96 8.661

MI250X 16 11.9 0.24 81 2.354
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While we have not yet achieved performance on the MI250X that is close to the GPU 
theoretical capabilities, we plan to rework the flux and curl kernels in the near future.

Based on the numbers presented on the previous slide, we expect to achieve 
significantly better performance on LUMI by leveraging the Local Data Share (LDS). For 
example, for the curl kernel on a single GCD, the achievable performance can be 
estimated as

𝟢.𝟥𝟩 𝖥𝖫𝖮𝖯𝖲/𝖡𝗒𝗍𝖾 ⋅ 𝟤𝟥.𝟫 𝖳𝖡/𝗌 = 𝟪.𝟪 𝖳𝖥𝖫𝖮𝖯𝖲

which is comparable to the performance observed on the NVIDIA H100



GPU vs CPU power consumption and CO2 emissions 18 / 34

In addition to the compute performance, it’s also important to consider the simulation 
power use as it impact the economic costs (electricity cost to run the computation and 
cool the data center) as well as the environmental footprint

Energy
per timestep

(J)

Average
Power

(W)

CO2eq
per hour3

(g)

2x AMD EPYC 7763 25.147 526 58

1x NVIDIA A100 4.026 302 33

1x NVIDIA H100 4.540 442 48

1x AMD MI250X 6.620 409 45

60M DoFs - order 5 - 5 000 time steps

3https://www.nowtricity.com : the average for the Belgian energy mix in 2024 was 110 gCO2eq/kWh

https://www.nowtricity.com


Multi-GPU performance
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The only part of the code that requires data exchange between GPUs is the 
computation of numerical fluxes, and in particular the evaluation of the jumps across 
element interfaces

The multi-GPU implementation leverages MPI to handle the exchange of boundary data 
between neighboring subdomains:

exchange_boundary_data():
1 for neighbor in NeighborsList:
2 indexes ← neighborIndexes[neighbor]
3 packedDataSend ← pack_boundary_data(fields, indexes)
4
5 Send(packedDataSend, neighbor)
6 Recv(packedDataRecv, neighbor)
7
8 compute_jumps(fields, indexes)
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Order 5 - 850M DoFs4

• Simple “naive” implementation using 
MPI blocking Send and Recv

• The parallel efficiency quickly drops 
below 80% (16 GPUs)

• Throughput doesn’t improve when 
using 64 GPUs

➡️ Switch to MPI non-blocking

4Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps 
Infiniband NICs
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Order 5 - 850M DoFs5

• Massive improvement compared to the 
blocking implementation

• 80% parallel efficiency up to 32 GPUs

• Throughput keeps improving when 
using 64 GPUs

❌️ Still, this is not enough to use more 
than 100+ GPUs efficiently

5Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps 
Infiniband NICs
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The limit to the scalability has two main reasons:

• As we increase the number of GPUs, the number of DoFs assigned to each GPU 
decreases, leaving fewer computations per device. This underutilization prevents 
the hardware from being fully saturated, with the impact being most pronounced in 
the compute-intensive Curl and Lifting kernels

• As the number of GPUs increases, the communication-to-computation ratio also 
rises

➡️ While the first limitation can be overcome with a larger problem size, we need to 
address the second limitation



A computational path for hiding communication 24 / 34

• If we want to be able to scale to a large number of GPUs, we need to hide the 
communication

• As the volume and surface path are independent, we can overlap the communication 
with the execution of the Curl kernel

Exchange
boundaries

data

Local
jumps

Curl

Interfaces
jumps

Flux Flux
lifting

+

Second GPU stream

Default GPU stream



Strategy for hiding communication 25 / 34

To hide communication, the implementation relies on two GPU streams that execute 
independently:

• A computation stream, where the majority of the computational kernels are launched

• A communication stream (high priority), where the packing and unpacking kernels 
(interface jumps) are executed

The kernels are submitted in a single batch to minimize kernel launch overhead:

• Coordination between the two streams is handled using CUDA/HIP events

• Events are also used to synchronize GPU and CPU work, for example by triggering 
MPI send operations once a packing kernel has completed



Execution profile with hidden communication 26 / 34

Host CUDA
Host MPI

GPU execution

Communication phase

H update E update

• The profiling confirms that the communication is overlapped with the execution of 
the Curl kernel

• If the problem size is large enough, the execution time of the Curl kernel is sufficient 
to completely mask the communication
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• Hiding communication improves 
scaling and the improvement is more 
visible as we increase the number of 
GPUs

• Using 64 GPUs, overlapping the 
communication with the Curl kernel 
execution allows to go from 172 to 236 
GDoFs/s

6Lucia - 4x NVIDIA A100 40GB GPUs - 1x AMD EPYC 7513 32-Core CPU - 256 GB of RAM, 2x 200 Gbps 
Infiniband NICs
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Order 5 - 2.3B DoFs7 • On Lucia, the maximum job size is 64 
GPUs. To validate our scaling results, 
we need to extend beyond this limit

• On Leonardo, we observe good 
parallel efficiency up to 128 GPUs, but 
it drops beyond that

🗒️ The GPUs on Leonardo have a higher 
maximum power limit (450 W vs. 400 W 
on Lucia), which slightly improves single-
GPU performance: 4.85 GDoFs/s 
compared to 4.61 GDoFs/s for Lucia

7Leonardo - 4x NVIDIA A100 64GB GPUs - 1x Intel Xeon Platinum 8358 32-core CPU - 512 GB of RAM, 4x 100 
Gbps Infiniband NICs
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• In previous scaling experiments, we 
used Leapfrog for time integration, 
which updates 𝑬 and 𝑯 in separate 
steps, leaving limited opportunity to 
hide communication

• By switching to fourth-order Runge-
Kutta, we gain more opportunities to 
hide communication, which improves 
strong scaling performance up to 256 
GPUs

➡️ As long as the execution time of the 
Curl kernel is sufficient to hide 
communication, we can expect strong 
scaling to remain good
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Order 5 - 2.3B DoFs8
• Efficiency > 90% up to 256 GCDs

• After 256 GCDs the amount of 
computation is not sufficient to hide 
communication and the parallel 
efficiency starts to drop

• LUMI scales better than Leonardo 
which can be explained by the 
difference in interconnect bandwidth 
(4x 200 Gbits/s vs 2x 200 Gbits/s)

8LUMI - 4x AMD MI250X 64GB GPUs - 1x AMD EPYC 7A53 64-core CPU - 512 GB of RAM, 4x 200 Gbps 
Slingshot NICs
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Order 5 - 2.3B DoFs
• Using RK4, the parallel efficiency 

exceeds 90% up to 256 GCDs

• Beyond 256 GCDs, the efficiency 
begins to decrease but remains above, 
or close to, 70%

• For runs on 128 compute nodes, both 
throughput and parallel efficiency are 
higher on LUMI (454 GDoFs/s, 69%) 
than on Leonardo (374 GDoFs/s, 60%)
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While we have achieved our goal of efficiently scaling to hundreds of GPUs, there is still 
room for further improvement in our implementation:

• On LUMI, we plan to experiment with stream- and GPU-triggered communication 
implemented in Cray MPICH. Initial tests were conducted but had to be halted 
because some features described in the documentation are not yet implemented in 
the libraries currently installed on LUMI

• We also plan to evaluate NVSHMEM/rocSHMEM to allow kernels to directly 
incorporate both communication and computation, which could reduce the need for 
synchronization with the CPU
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Thank you for your attention

Contact: orian.louant@uliege.be

mailto:orian.louant@uliege.be
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